Elucidating Substrate Promiscuity within the FabI Enzyme Family
The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2017-09, Vol.12 (9), p.2465-2473 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2473 |
---|---|
container_issue | 9 |
container_start_page | 2465 |
container_title | ACS chemical biology |
container_volume | 12 |
creator | Freund, Gabriel S O’Brien, Terrence E Vinson, Logan Carlin, Dylan Alexander Yao, Andrew Mak, Wai Shun Tagkopoulos, Ilias Facciotti, Marc T Tantillo, Dean J Siegel, Justin B |
description | The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts. |
doi_str_mv | 10.1021/acschembio.7b00400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930480586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930480586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlb_gAuZpZup-Z5kJVJaLRQU1HXIZDI2ZT5qkkHGX--U1rpz9d7i3Mt7B4BrBKcIYnSnTTBrW-eunWY5hBTCEzBGjNFUSJKdHncsR-AihM2AEC7kORhhITCUhI_B_bzqjCt0dM1H8trlIXodbfLi29oF07nYJ18url2TxLVNFjpfJvPmu693e-2q_hKclboK9uowJ-B9MX-bPaWr58fl7GGVasyymDIrKS9LTnWZGSkywYQtJeYlJIwxpHkhICJMkIJaIwzVBeYmZ9JySYwghEzA7b5369vPzoaodvfZqtKNbbugkCSQCsgEH1C8R41vQ_C2VFvvau17haDaiVN_4tRB3BC6OfR3eW2LY-TX1ABM98AQVpu2883w7n-NP5K_et0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930480586</pqid></control><display><type>article</type><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><source>ACS Publications</source><source>MEDLINE</source><creator>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</creator><creatorcontrib>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</creatorcontrib><description>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.7b00400</identifier><identifier>PMID: 28820936</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalytic Domain ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism ; Humans ; Malaria, Falciparum - parasitology ; Molecular Docking Simulation ; Plasmodium falciparum - chemistry ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - metabolism ; Protozoan Proteins - chemistry ; Protozoan Proteins - metabolism ; Substrate Specificity</subject><ispartof>ACS chemical biology, 2017-09, Vol.12 (9), p.2465-2473</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</citedby><cites>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</cites><orcidid>0000-0002-5621-5065 ; 0000-0002-2992-8844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.7b00400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.7b00400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28820936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freund, Gabriel S</creatorcontrib><creatorcontrib>O’Brien, Terrence E</creatorcontrib><creatorcontrib>Vinson, Logan</creatorcontrib><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Yao, Andrew</creatorcontrib><creatorcontrib>Mak, Wai Shun</creatorcontrib><creatorcontrib>Tagkopoulos, Ilias</creatorcontrib><creatorcontrib>Facciotti, Marc T</creatorcontrib><creatorcontrib>Tantillo, Dean J</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</description><subject>Catalytic Domain</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</subject><subject>Humans</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Molecular Docking Simulation</subject><subject>Plasmodium falciparum - chemistry</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - metabolism</subject><subject>Substrate Specificity</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEURYMotlb_gAuZpZup-Z5kJVJaLRQU1HXIZDI2ZT5qkkHGX--U1rpz9d7i3Mt7B4BrBKcIYnSnTTBrW-eunWY5hBTCEzBGjNFUSJKdHncsR-AihM2AEC7kORhhITCUhI_B_bzqjCt0dM1H8trlIXodbfLi29oF07nYJ18url2TxLVNFjpfJvPmu693e-2q_hKclboK9uowJ-B9MX-bPaWr58fl7GGVasyymDIrKS9LTnWZGSkywYQtJeYlJIwxpHkhICJMkIJaIwzVBeYmZ9JySYwghEzA7b5369vPzoaodvfZqtKNbbugkCSQCsgEH1C8R41vQ_C2VFvvau17haDaiVN_4tRB3BC6OfR3eW2LY-TX1ABM98AQVpu2883w7n-NP5K_et0</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Freund, Gabriel S</creator><creator>O’Brien, Terrence E</creator><creator>Vinson, Logan</creator><creator>Carlin, Dylan Alexander</creator><creator>Yao, Andrew</creator><creator>Mak, Wai Shun</creator><creator>Tagkopoulos, Ilias</creator><creator>Facciotti, Marc T</creator><creator>Tantillo, Dean J</creator><creator>Siegel, Justin B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5621-5065</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid></search><sort><creationdate>20170915</creationdate><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><author>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalytic Domain</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</topic><topic>Humans</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Molecular Docking Simulation</topic><topic>Plasmodium falciparum - chemistry</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freund, Gabriel S</creatorcontrib><creatorcontrib>O’Brien, Terrence E</creatorcontrib><creatorcontrib>Vinson, Logan</creatorcontrib><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Yao, Andrew</creatorcontrib><creatorcontrib>Mak, Wai Shun</creatorcontrib><creatorcontrib>Tagkopoulos, Ilias</creatorcontrib><creatorcontrib>Facciotti, Marc T</creatorcontrib><creatorcontrib>Tantillo, Dean J</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freund, Gabriel S</au><au>O’Brien, Terrence E</au><au>Vinson, Logan</au><au>Carlin, Dylan Alexander</au><au>Yao, Andrew</au><au>Mak, Wai Shun</au><au>Tagkopoulos, Ilias</au><au>Facciotti, Marc T</au><au>Tantillo, Dean J</au><au>Siegel, Justin B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating Substrate Promiscuity within the FabI Enzyme Family</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>2465</spage><epage>2473</epage><pages>2465-2473</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28820936</pmid><doi>10.1021/acschembio.7b00400</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5621-5065</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2017-09, Vol.12 (9), p.2465-2473 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_proquest_miscellaneous_1930480586 |
source | ACS Publications; MEDLINE |
subjects | Catalytic Domain Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism Humans Malaria, Falciparum - parasitology Molecular Docking Simulation Plasmodium falciparum - chemistry Plasmodium falciparum - enzymology Plasmodium falciparum - metabolism Protozoan Proteins - chemistry Protozoan Proteins - metabolism Substrate Specificity |
title | Elucidating Substrate Promiscuity within the FabI Enzyme Family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20Substrate%20Promiscuity%20within%20the%20FabI%20Enzyme%20Family&rft.jtitle=ACS%20chemical%20biology&rft.au=Freund,%20Gabriel%20S&rft.date=2017-09-15&rft.volume=12&rft.issue=9&rft.spage=2465&rft.epage=2473&rft.pages=2465-2473&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.7b00400&rft_dat=%3Cproquest_cross%3E1930480586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930480586&rft_id=info:pmid/28820936&rfr_iscdi=true |