Elucidating Substrate Promiscuity within the FabI Enzyme Family

The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2017-09, Vol.12 (9), p.2465-2473
Hauptverfasser: Freund, Gabriel S, O’Brien, Terrence E, Vinson, Logan, Carlin, Dylan Alexander, Yao, Andrew, Mak, Wai Shun, Tagkopoulos, Ilias, Facciotti, Marc T, Tantillo, Dean J, Siegel, Justin B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2473
container_issue 9
container_start_page 2465
container_title ACS chemical biology
container_volume 12
creator Freund, Gabriel S
O’Brien, Terrence E
Vinson, Logan
Carlin, Dylan Alexander
Yao, Andrew
Mak, Wai Shun
Tagkopoulos, Ilias
Facciotti, Marc T
Tantillo, Dean J
Siegel, Justin B
description The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.
doi_str_mv 10.1021/acschembio.7b00400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930480586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930480586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlb_gAuZpZup-Z5kJVJaLRQU1HXIZDI2ZT5qkkHGX--U1rpz9d7i3Mt7B4BrBKcIYnSnTTBrW-eunWY5hBTCEzBGjNFUSJKdHncsR-AihM2AEC7kORhhITCUhI_B_bzqjCt0dM1H8trlIXodbfLi29oF07nYJ18url2TxLVNFjpfJvPmu693e-2q_hKclboK9uowJ-B9MX-bPaWr58fl7GGVasyymDIrKS9LTnWZGSkywYQtJeYlJIwxpHkhICJMkIJaIwzVBeYmZ9JySYwghEzA7b5369vPzoaodvfZqtKNbbugkCSQCsgEH1C8R41vQ_C2VFvvau17haDaiVN_4tRB3BC6OfR3eW2LY-TX1ABM98AQVpu2883w7n-NP5K_et0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930480586</pqid></control><display><type>article</type><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><source>ACS Publications</source><source>MEDLINE</source><creator>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</creator><creatorcontrib>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</creatorcontrib><description>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.7b00400</identifier><identifier>PMID: 28820936</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalytic Domain ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism ; Humans ; Malaria, Falciparum - parasitology ; Molecular Docking Simulation ; Plasmodium falciparum - chemistry ; Plasmodium falciparum - enzymology ; Plasmodium falciparum - metabolism ; Protozoan Proteins - chemistry ; Protozoan Proteins - metabolism ; Substrate Specificity</subject><ispartof>ACS chemical biology, 2017-09, Vol.12 (9), p.2465-2473</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</citedby><cites>FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</cites><orcidid>0000-0002-5621-5065 ; 0000-0002-2992-8844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.7b00400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.7b00400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28820936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freund, Gabriel S</creatorcontrib><creatorcontrib>O’Brien, Terrence E</creatorcontrib><creatorcontrib>Vinson, Logan</creatorcontrib><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Yao, Andrew</creatorcontrib><creatorcontrib>Mak, Wai Shun</creatorcontrib><creatorcontrib>Tagkopoulos, Ilias</creatorcontrib><creatorcontrib>Facciotti, Marc T</creatorcontrib><creatorcontrib>Tantillo, Dean J</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</description><subject>Catalytic Domain</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</subject><subject>Humans</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Molecular Docking Simulation</subject><subject>Plasmodium falciparum - chemistry</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - metabolism</subject><subject>Substrate Specificity</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEURYMotlb_gAuZpZup-Z5kJVJaLRQU1HXIZDI2ZT5qkkHGX--U1rpz9d7i3Mt7B4BrBKcIYnSnTTBrW-eunWY5hBTCEzBGjNFUSJKdHncsR-AihM2AEC7kORhhITCUhI_B_bzqjCt0dM1H8trlIXodbfLi29oF07nYJ18url2TxLVNFjpfJvPmu693e-2q_hKclboK9uowJ-B9MX-bPaWr58fl7GGVasyymDIrKS9LTnWZGSkywYQtJeYlJIwxpHkhICJMkIJaIwzVBeYmZ9JySYwghEzA7b5369vPzoaodvfZqtKNbbugkCSQCsgEH1C8R41vQ_C2VFvvau17haDaiVN_4tRB3BC6OfR3eW2LY-TX1ABM98AQVpu2883w7n-NP5K_et0</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Freund, Gabriel S</creator><creator>O’Brien, Terrence E</creator><creator>Vinson, Logan</creator><creator>Carlin, Dylan Alexander</creator><creator>Yao, Andrew</creator><creator>Mak, Wai Shun</creator><creator>Tagkopoulos, Ilias</creator><creator>Facciotti, Marc T</creator><creator>Tantillo, Dean J</creator><creator>Siegel, Justin B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5621-5065</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid></search><sort><creationdate>20170915</creationdate><title>Elucidating Substrate Promiscuity within the FabI Enzyme Family</title><author>Freund, Gabriel S ; O’Brien, Terrence E ; Vinson, Logan ; Carlin, Dylan Alexander ; Yao, Andrew ; Mak, Wai Shun ; Tagkopoulos, Ilias ; Facciotti, Marc T ; Tantillo, Dean J ; Siegel, Justin B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a257t-5e946ff64af7c987858ef926f035551a6d8013583d4ec8c4ad26cb59e693c8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalytic Domain</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</topic><topic>Humans</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Molecular Docking Simulation</topic><topic>Plasmodium falciparum - chemistry</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freund, Gabriel S</creatorcontrib><creatorcontrib>O’Brien, Terrence E</creatorcontrib><creatorcontrib>Vinson, Logan</creatorcontrib><creatorcontrib>Carlin, Dylan Alexander</creatorcontrib><creatorcontrib>Yao, Andrew</creatorcontrib><creatorcontrib>Mak, Wai Shun</creatorcontrib><creatorcontrib>Tagkopoulos, Ilias</creatorcontrib><creatorcontrib>Facciotti, Marc T</creatorcontrib><creatorcontrib>Tantillo, Dean J</creatorcontrib><creatorcontrib>Siegel, Justin B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freund, Gabriel S</au><au>O’Brien, Terrence E</au><au>Vinson, Logan</au><au>Carlin, Dylan Alexander</au><au>Yao, Andrew</au><au>Mak, Wai Shun</au><au>Tagkopoulos, Ilias</au><au>Facciotti, Marc T</au><au>Tantillo, Dean J</au><au>Siegel, Justin B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating Substrate Promiscuity within the FabI Enzyme Family</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>2465</spage><epage>2473</epage><pages>2465-2473</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>The rapidly growing appreciation of enzymes’ catalytic and substrate promiscuity may lead to their expanded use in the fields of chemical synthesis and industrial biotechnology. Here, we explore the substrate promiscuity of enoyl-acyl carrier protein reductases (commonly known as FabI) and how that promiscuity is a function of inherent reactivity and the geometric demands of the enzyme’s active site. We demonstrate that these enzymes catalyze the reduction of a wide range of substrates, particularly α,β-unsaturated aldehydes. In addition, we demonstrate that a combination of quantum mechanical hydride affinity calculations and molecular docking can be used to rapidly categorize compounds that FabI can use as substrates. The results here provide new insight into the determinants of catalysis for FabI and set the stage for the development of a new assay for drug discovery, organic synthesis, and novel biocatalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28820936</pmid><doi>10.1021/acschembio.7b00400</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5621-5065</orcidid><orcidid>https://orcid.org/0000-0002-2992-8844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2017-09, Vol.12 (9), p.2465-2473
issn 1554-8929
1554-8937
language eng
recordid cdi_proquest_miscellaneous_1930480586
source ACS Publications; MEDLINE
subjects Catalytic Domain
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism
Humans
Malaria, Falciparum - parasitology
Molecular Docking Simulation
Plasmodium falciparum - chemistry
Plasmodium falciparum - enzymology
Plasmodium falciparum - metabolism
Protozoan Proteins - chemistry
Protozoan Proteins - metabolism
Substrate Specificity
title Elucidating Substrate Promiscuity within the FabI Enzyme Family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20Substrate%20Promiscuity%20within%20the%20FabI%20Enzyme%20Family&rft.jtitle=ACS%20chemical%20biology&rft.au=Freund,%20Gabriel%20S&rft.date=2017-09-15&rft.volume=12&rft.issue=9&rft.spage=2465&rft.epage=2473&rft.pages=2465-2473&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.7b00400&rft_dat=%3Cproquest_cross%3E1930480586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930480586&rft_id=info:pmid/28820936&rfr_iscdi=true