Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life

The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-09, Vol.17 (9), p.5740-5746
Hauptverfasser: Dong, Yifan, Wang, Bingliang, Zhao, Kangning, Yu, Yanhao, Wang, Xudong, Mai, Liqiang, Jin, Song
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5746
container_issue 9
container_start_page 5740
container_title Nano letters
container_volume 17
creator Dong, Yifan
Wang, Bingliang
Zhao, Kangning
Yu, Yanhao
Wang, Xudong
Mai, Liqiang
Jin, Song
description The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anion conversion from polymer coated Fe2O3 microcubes. The resulting carbon microboxes could not only protect the air-sensitive Fe2N from oxidation but also retain thin and stable SEI layer. The appropriate internal voids in the Fe2N cubes help to release the volume expansion during lithiation/delithiation processes, and Fe2N is kept inside the carbon microboxes without breaking the shell, resulting in a very low electrode volume expansion (the electrode thickness variation upon lithiation is ∼9%). Therefore, the Fe2N@C electrodes maintain high volumetric capacity (1030 mA h cm–3 based on the lithiation-state electrode volume) comparable to silicon anodes, stable cycling performance (a capacity retention of over 91% for 2500 cycles), and excellent rate performance. Kinetic analysis reveals that the Fe2N@C shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. This work provides a new direction on designing and constructing nanostructured electrodes and protective layer for air unstable conversion materials for potential applications as a lithium-ion battery/capacitor electrode.
doi_str_mv 10.1021/acs.nanolett.7b02698
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930479101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930479101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-8fc7ecef02ff6fea35ddeed3ef8248c0f520b08671186f3d679110d5cdbdf48e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwByy8ZJMyztNZVlFLkcJDKrCNHHvcukrtEjuCSnw8qVpYzejq3nmcILilMKEQ0Xsu3MRwY1v0fpI3EGUFOwtGNI0hzIoiOv_vWXIZXDm3AYAiTmEU_Ex1Fy49b1okr7azvSNzjJ7JzAi-c33LPUqiDSl511hDnrTobGO_0ZEv7ddkoVdr8mHbfou-04JUg6j7LVl62_EVDrEdF9rvCTeScFJZsyLlXgzLKq3wOrhQvHV4c6rj4H0-eysXYfXy8FhOq5BHDHzIlMhRoIJIqUwhj1MpEWWMikUJE6DSCBpgWU4py1Qss7ygFGQqZCNVwjAeB3fHubvOfvbofL3VTmDbcoPDxzUtYkiGENDBCkfrwLTe2L4zw2E1hfoAuj6If6DrE-j4F5k_doM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930479101</pqid></control><display><type>article</type><title>Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life</title><source>ACS Publications</source><creator>Dong, Yifan ; Wang, Bingliang ; Zhao, Kangning ; Yu, Yanhao ; Wang, Xudong ; Mai, Liqiang ; Jin, Song</creator><creatorcontrib>Dong, Yifan ; Wang, Bingliang ; Zhao, Kangning ; Yu, Yanhao ; Wang, Xudong ; Mai, Liqiang ; Jin, Song</creatorcontrib><description>The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anion conversion from polymer coated Fe2O3 microcubes. The resulting carbon microboxes could not only protect the air-sensitive Fe2N from oxidation but also retain thin and stable SEI layer. The appropriate internal voids in the Fe2N cubes help to release the volume expansion during lithiation/delithiation processes, and Fe2N is kept inside the carbon microboxes without breaking the shell, resulting in a very low electrode volume expansion (the electrode thickness variation upon lithiation is ∼9%). Therefore, the Fe2N@C electrodes maintain high volumetric capacity (1030 mA h cm–3 based on the lithiation-state electrode volume) comparable to silicon anodes, stable cycling performance (a capacity retention of over 91% for 2500 cycles), and excellent rate performance. Kinetic analysis reveals that the Fe2N@C shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. This work provides a new direction on designing and constructing nanostructured electrodes and protective layer for air unstable conversion materials for potential applications as a lithium-ion battery/capacitor electrode.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b02698</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2017-09, Vol.17 (9), p.5740-5746</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-8fc7ecef02ff6fea35ddeed3ef8248c0f520b08671186f3d679110d5cdbdf48e3</citedby><orcidid>0000-0003-2916-4386 ; 0000-0002-9762-6792 ; 0000-0002-6431-7598 ; 0000-0001-8693-7010 ; 0000-0003-4259-7725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b02698$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b02698$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Dong, Yifan</creatorcontrib><creatorcontrib>Wang, Bingliang</creatorcontrib><creatorcontrib>Zhao, Kangning</creatorcontrib><creatorcontrib>Yu, Yanhao</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><title>Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anion conversion from polymer coated Fe2O3 microcubes. The resulting carbon microboxes could not only protect the air-sensitive Fe2N from oxidation but also retain thin and stable SEI layer. The appropriate internal voids in the Fe2N cubes help to release the volume expansion during lithiation/delithiation processes, and Fe2N is kept inside the carbon microboxes without breaking the shell, resulting in a very low electrode volume expansion (the electrode thickness variation upon lithiation is ∼9%). Therefore, the Fe2N@C electrodes maintain high volumetric capacity (1030 mA h cm–3 based on the lithiation-state electrode volume) comparable to silicon anodes, stable cycling performance (a capacity retention of over 91% for 2500 cycles), and excellent rate performance. Kinetic analysis reveals that the Fe2N@C shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. This work provides a new direction on designing and constructing nanostructured electrodes and protective layer for air unstable conversion materials for potential applications as a lithium-ion battery/capacitor electrode.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEqXwByy8ZJMyztNZVlFLkcJDKrCNHHvcukrtEjuCSnw8qVpYzejq3nmcILilMKEQ0Xsu3MRwY1v0fpI3EGUFOwtGNI0hzIoiOv_vWXIZXDm3AYAiTmEU_Ex1Fy49b1okr7azvSNzjJ7JzAi-c33LPUqiDSl511hDnrTobGO_0ZEv7ddkoVdr8mHbfou-04JUg6j7LVl62_EVDrEdF9rvCTeScFJZsyLlXgzLKq3wOrhQvHV4c6rj4H0-eysXYfXy8FhOq5BHDHzIlMhRoIJIqUwhj1MpEWWMikUJE6DSCBpgWU4py1Qss7ygFGQqZCNVwjAeB3fHubvOfvbofL3VTmDbcoPDxzUtYkiGENDBCkfrwLTe2L4zw2E1hfoAuj6If6DrE-j4F5k_doM</recordid><startdate>20170913</startdate><enddate>20170913</enddate><creator>Dong, Yifan</creator><creator>Wang, Bingliang</creator><creator>Zhao, Kangning</creator><creator>Yu, Yanhao</creator><creator>Wang, Xudong</creator><creator>Mai, Liqiang</creator><creator>Jin, Song</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2916-4386</orcidid><orcidid>https://orcid.org/0000-0002-9762-6792</orcidid><orcidid>https://orcid.org/0000-0002-6431-7598</orcidid><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid></search><sort><creationdate>20170913</creationdate><title>Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life</title><author>Dong, Yifan ; Wang, Bingliang ; Zhao, Kangning ; Yu, Yanhao ; Wang, Xudong ; Mai, Liqiang ; Jin, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-8fc7ecef02ff6fea35ddeed3ef8248c0f520b08671186f3d679110d5cdbdf48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yifan</creatorcontrib><creatorcontrib>Wang, Bingliang</creatorcontrib><creatorcontrib>Zhao, Kangning</creatorcontrib><creatorcontrib>Yu, Yanhao</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yifan</au><au>Wang, Bingliang</au><au>Zhao, Kangning</au><au>Yu, Yanhao</au><au>Wang, Xudong</au><au>Mai, Liqiang</au><au>Jin, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-09-13</date><risdate>2017</risdate><volume>17</volume><issue>9</issue><spage>5740</spage><epage>5746</epage><pages>5740-5746</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anion conversion from polymer coated Fe2O3 microcubes. The resulting carbon microboxes could not only protect the air-sensitive Fe2N from oxidation but also retain thin and stable SEI layer. The appropriate internal voids in the Fe2N cubes help to release the volume expansion during lithiation/delithiation processes, and Fe2N is kept inside the carbon microboxes without breaking the shell, resulting in a very low electrode volume expansion (the electrode thickness variation upon lithiation is ∼9%). Therefore, the Fe2N@C electrodes maintain high volumetric capacity (1030 mA h cm–3 based on the lithiation-state electrode volume) comparable to silicon anodes, stable cycling performance (a capacity retention of over 91% for 2500 cycles), and excellent rate performance. Kinetic analysis reveals that the Fe2N@C shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. This work provides a new direction on designing and constructing nanostructured electrodes and protective layer for air unstable conversion materials for potential applications as a lithium-ion battery/capacitor electrode.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.7b02698</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2916-4386</orcidid><orcidid>https://orcid.org/0000-0002-9762-6792</orcidid><orcidid>https://orcid.org/0000-0002-6431-7598</orcidid><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-09, Vol.17 (9), p.5740-5746
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1930479101
source ACS Publications
title Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-Stable%20Porous%20Fe2N%20Encapsulated%20in%20Carbon%20Microboxes%20with%20High%20Volumetric%20Lithium%20Storage%20Capacity%20and%20a%20Long%20Cycle%20Life&rft.jtitle=Nano%20letters&rft.au=Dong,%20Yifan&rft.date=2017-09-13&rft.volume=17&rft.issue=9&rft.spage=5740&rft.epage=5746&rft.pages=5740-5746&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b02698&rft_dat=%3Cproquest_acs_j%3E1930479101%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930479101&rft_id=info:pmid/&rfr_iscdi=true