Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed...
Gespeichert in:
Veröffentlicht in: | Basic research in cardiology 2017-09, Vol.112 (5), p.55-55 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 5 |
container_start_page | 55 |
container_title | Basic research in cardiology |
container_volume | 112 |
creator | Xu, Xin Zhang, Ping Kwak, Dongmin Fassett, John Yue, Wenhui Atzler, Dorothee Hu, Xinli Liu, Xiaohong Wang, Huan Lu, Zhongbing Guo, Haipeng Schwedhelm, Edzard Böger, Rainer H. Chen, Peijie Chen, Yingjie |
description | Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling. |
doi_str_mv | 10.1007/s00395-017-0644-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930478557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929438845</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-2648145e81c499ae3fad518a2b83e188f038795b4b45e8f5a2f3f84de27bf60e3</originalsourceid><addsrcrecordid>eNpd0c-K1TAUBvAginMdfQA3EnAzLqL526bL4Y46woAbXYe0Pb03Q5vUJBUyD-Ezm8sdYXAVOPnl45APobeMfmSUtp8SpaJThLKW0EZK8vAM7ZgUijBNxXO0o4JSoiXXF-hVSveUMtk07CW64FqzrtFqh_7sbRxdWEoYSgY8ugXyscw2Hpx3_slgcT4cyxjDbBMQhq9ubq5v2Qe8zrYkbD12yxpitj7jagA7j23O4DebnT_g3-BzdMNWk_GxrBBzDOux1IcjHkuaNj9kF_xr9GKyc4I3j-cl-vnl84_9Lbn7_vXb_vqOrJzxTHgjNZMKNBtk11kQkx0V05b3WgDTeqJCt53qZX9Ck7J8EpOWI_C2nxoK4hJdnXPXGH5tkLJZXBpgnq2HsCXDOkFlq5VqK33_H70PW_R1u6p4J4XWUlX17lFt_QKjWaNbbCzm309XwM8g1St_gPgkhppTneZcp6l1mlOd5kH8BVVqk28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929438845</pqid></control><display><type>article</type><title>Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction</title><source>MEDLINE</source><source>SpringerNature Complete Journals</source><creator>Xu, Xin ; Zhang, Ping ; Kwak, Dongmin ; Fassett, John ; Yue, Wenhui ; Atzler, Dorothee ; Hu, Xinli ; Liu, Xiaohong ; Wang, Huan ; Lu, Zhongbing ; Guo, Haipeng ; Schwedhelm, Edzard ; Böger, Rainer H. ; Chen, Peijie ; Chen, Yingjie</creator><creatorcontrib>Xu, Xin ; Zhang, Ping ; Kwak, Dongmin ; Fassett, John ; Yue, Wenhui ; Atzler, Dorothee ; Hu, Xinli ; Liu, Xiaohong ; Wang, Huan ; Lu, Zhongbing ; Guo, Haipeng ; Schwedhelm, Edzard ; Böger, Rainer H. ; Chen, Peijie ; Chen, Yingjie</creatorcontrib><description>Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling.</description><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-017-0644-z</identifier><identifier>PMID: 28819685</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aging ; Amidohydrolases - deficiency ; Amidohydrolases - genetics ; Amidohydrolases - metabolism ; Animals ; Aorta ; Arginine - analogs & derivatives ; Arginine - blood ; Atrial Natriuretic Factor - metabolism ; Bioavailability ; Cardiology ; Cardiomyocytes ; Degradation ; Dimethylargininase ; Disease Models, Animal ; Endothelial cells ; Eutrophication ; Fibrosis ; Genetic Predisposition to Disease ; Heart ; Heart diseases ; Homeostasis ; Hypertrophy ; Hypertrophy, Left Ventricular - enzymology ; Hypertrophy, Left Ventricular - genetics ; Hypertrophy, Left Ventricular - physiopathology ; Hypertrophy, Left Ventricular - prevention & control ; Male ; Medicine ; Medicine & Public Health ; Mice ; Mice, Knockout ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - pathology ; Nitric oxide ; Nitric Oxide - metabolism ; Nitrotyrosine ; Original Contribution ; Phenotype ; Plasmas (physics) ; Rodents ; Sarcolemma ; Signal Transduction ; Stresses ; Tyrosine - analogs & derivatives ; Tyrosine - metabolism ; Ventricle ; Ventricular Dysfunction, Left - enzymology ; Ventricular Dysfunction, Left - genetics ; Ventricular Dysfunction, Left - physiopathology ; Ventricular Dysfunction, Left - prevention & control ; Ventricular Function, Left ; Ventricular Remodeling</subject><ispartof>Basic research in cardiology, 2017-09, Vol.112 (5), p.55-55</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Basic Research in Cardiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-2648145e81c499ae3fad518a2b83e188f038795b4b45e8f5a2f3f84de27bf60e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00395-017-0644-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00395-017-0644-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28819685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Fassett, John</creatorcontrib><creatorcontrib>Yue, Wenhui</creatorcontrib><creatorcontrib>Atzler, Dorothee</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lu, Zhongbing</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Schwedhelm, Edzard</creatorcontrib><creatorcontrib>Böger, Rainer H.</creatorcontrib><creatorcontrib>Chen, Peijie</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><title>Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><addtitle>Basic Res Cardiol</addtitle><description>Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling.</description><subject>Aging</subject><subject>Amidohydrolases - deficiency</subject><subject>Amidohydrolases - genetics</subject><subject>Amidohydrolases - metabolism</subject><subject>Animals</subject><subject>Aorta</subject><subject>Arginine - analogs & derivatives</subject><subject>Arginine - blood</subject><subject>Atrial Natriuretic Factor - metabolism</subject><subject>Bioavailability</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Degradation</subject><subject>Dimethylargininase</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Eutrophication</subject><subject>Fibrosis</subject><subject>Genetic Predisposition to Disease</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Hypertrophy</subject><subject>Hypertrophy, Left Ventricular - enzymology</subject><subject>Hypertrophy, Left Ventricular - genetics</subject><subject>Hypertrophy, Left Ventricular - physiopathology</subject><subject>Hypertrophy, Left Ventricular - prevention & control</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrotyrosine</subject><subject>Original Contribution</subject><subject>Phenotype</subject><subject>Plasmas (physics)</subject><subject>Rodents</subject><subject>Sarcolemma</subject><subject>Signal Transduction</subject><subject>Stresses</subject><subject>Tyrosine - analogs & derivatives</subject><subject>Tyrosine - metabolism</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Left - enzymology</subject><subject>Ventricular Dysfunction, Left - genetics</subject><subject>Ventricular Dysfunction, Left - physiopathology</subject><subject>Ventricular Dysfunction, Left - prevention & control</subject><subject>Ventricular Function, Left</subject><subject>Ventricular Remodeling</subject><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpd0c-K1TAUBvAginMdfQA3EnAzLqL526bL4Y46woAbXYe0Pb03Q5vUJBUyD-Ezm8sdYXAVOPnl45APobeMfmSUtp8SpaJThLKW0EZK8vAM7ZgUijBNxXO0o4JSoiXXF-hVSveUMtk07CW64FqzrtFqh_7sbRxdWEoYSgY8ugXyscw2Hpx3_slgcT4cyxjDbBMQhq9ubq5v2Qe8zrYkbD12yxpitj7jagA7j23O4DebnT_g3-BzdMNWk_GxrBBzDOux1IcjHkuaNj9kF_xr9GKyc4I3j-cl-vnl84_9Lbn7_vXb_vqOrJzxTHgjNZMKNBtk11kQkx0V05b3WgDTeqJCt53qZX9Ck7J8EpOWI_C2nxoK4hJdnXPXGH5tkLJZXBpgnq2HsCXDOkFlq5VqK33_H70PW_R1u6p4J4XWUlX17lFt_QKjWaNbbCzm309XwM8g1St_gPgkhppTneZcp6l1mlOd5kH8BVVqk28</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xu, Xin</creator><creator>Zhang, Ping</creator><creator>Kwak, Dongmin</creator><creator>Fassett, John</creator><creator>Yue, Wenhui</creator><creator>Atzler, Dorothee</creator><creator>Hu, Xinli</creator><creator>Liu, Xiaohong</creator><creator>Wang, Huan</creator><creator>Lu, Zhongbing</creator><creator>Guo, Haipeng</creator><creator>Schwedhelm, Edzard</creator><creator>Böger, Rainer H.</creator><creator>Chen, Peijie</creator><creator>Chen, Yingjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction</title><author>Xu, Xin ; Zhang, Ping ; Kwak, Dongmin ; Fassett, John ; Yue, Wenhui ; Atzler, Dorothee ; Hu, Xinli ; Liu, Xiaohong ; Wang, Huan ; Lu, Zhongbing ; Guo, Haipeng ; Schwedhelm, Edzard ; Böger, Rainer H. ; Chen, Peijie ; Chen, Yingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-2648145e81c499ae3fad518a2b83e188f038795b4b45e8f5a2f3f84de27bf60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging</topic><topic>Amidohydrolases - deficiency</topic><topic>Amidohydrolases - genetics</topic><topic>Amidohydrolases - metabolism</topic><topic>Animals</topic><topic>Aorta</topic><topic>Arginine - analogs & derivatives</topic><topic>Arginine - blood</topic><topic>Atrial Natriuretic Factor - metabolism</topic><topic>Bioavailability</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Degradation</topic><topic>Dimethylargininase</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Eutrophication</topic><topic>Fibrosis</topic><topic>Genetic Predisposition to Disease</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Hypertrophy</topic><topic>Hypertrophy, Left Ventricular - enzymology</topic><topic>Hypertrophy, Left Ventricular - genetics</topic><topic>Hypertrophy, Left Ventricular - physiopathology</topic><topic>Hypertrophy, Left Ventricular - prevention & control</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrotyrosine</topic><topic>Original Contribution</topic><topic>Phenotype</topic><topic>Plasmas (physics)</topic><topic>Rodents</topic><topic>Sarcolemma</topic><topic>Signal Transduction</topic><topic>Stresses</topic><topic>Tyrosine - analogs & derivatives</topic><topic>Tyrosine - metabolism</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Left - enzymology</topic><topic>Ventricular Dysfunction, Left - genetics</topic><topic>Ventricular Dysfunction, Left - physiopathology</topic><topic>Ventricular Dysfunction, Left - prevention & control</topic><topic>Ventricular Function, Left</topic><topic>Ventricular Remodeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xin</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Kwak, Dongmin</creatorcontrib><creatorcontrib>Fassett, John</creatorcontrib><creatorcontrib>Yue, Wenhui</creatorcontrib><creatorcontrib>Atzler, Dorothee</creatorcontrib><creatorcontrib>Hu, Xinli</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lu, Zhongbing</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Schwedhelm, Edzard</creatorcontrib><creatorcontrib>Böger, Rainer H.</creatorcontrib><creatorcontrib>Chen, Peijie</creatorcontrib><creatorcontrib>Chen, Yingjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xin</au><au>Zhang, Ping</au><au>Kwak, Dongmin</au><au>Fassett, John</au><au>Yue, Wenhui</au><au>Atzler, Dorothee</au><au>Hu, Xinli</au><au>Liu, Xiaohong</au><au>Wang, Huan</au><au>Lu, Zhongbing</au><au>Guo, Haipeng</au><au>Schwedhelm, Edzard</au><au>Böger, Rainer H.</au><au>Chen, Peijie</au><au>Chen, Yingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction</atitle><jtitle>Basic research in cardiology</jtitle><stitle>Basic Res Cardiol</stitle><addtitle>Basic Res Cardiol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>112</volume><issue>5</issue><spage>55</spage><epage>55</epage><pages>55-55</pages><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases that limits nitric oxide bioavailability. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) exerts a critical role for ADMA degradation and plays an important role in NO signaling. In the heart, DDAH1 is observed in endothelial cells and in the sarcolemma of cardiomyocytes. While NO signaling is important for cardiac adaptation to stress, DDAH1 impact on cardiomyocyte homeostasis is not clear. Here we used the MerCreMer-LoxP model to specifically disrupt cardiomyocyte DDAH1 expression in adult mice to determine the physiological impact of cardiomyocyte DDAH1 under basal conditions and during hypertrophic stress imposed by transverse aortic constriction (TAC). Under control conditions, cardiomyocyte-specific DDAH1 knockout (cDDAH KO) had no detectable effect on plasma ADMA and left ventricular (LV) hypertrophy or function in adult or aging mice. In response to TAC, DDAH1 levels were elevated 2.5-fold in WT mice, which exhibited no change in LV or plasma ADMA content and moderate LV hypertrophy and LV dysfunction. In contrast, cDDAH1 KO mice exposed to TAC showed no increase in LV DDAH1 expression, slightly increased LV tissue ADMA levels, no increase in plasma ADMA, but significantly exacerbated LV hypertrophy, fibrosis, nitrotyrosine production, and LV dysfunction. These findings indicate cardiomyocyte DDAH1 activity is dispensable for cardiac function under basal conditions, but plays an important role in attenuating cardiac hypertrophy and ventricular remodeling under stress conditions, possibly through locally confined regulation of subcellular ADMA and NO signaling.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28819685</pmid><doi>10.1007/s00395-017-0644-z</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-8428 |
ispartof | Basic research in cardiology, 2017-09, Vol.112 (5), p.55-55 |
issn | 0300-8428 1435-1803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1930478557 |
source | MEDLINE; SpringerNature Complete Journals |
subjects | Aging Amidohydrolases - deficiency Amidohydrolases - genetics Amidohydrolases - metabolism Animals Aorta Arginine - analogs & derivatives Arginine - blood Atrial Natriuretic Factor - metabolism Bioavailability Cardiology Cardiomyocytes Degradation Dimethylargininase Disease Models, Animal Endothelial cells Eutrophication Fibrosis Genetic Predisposition to Disease Heart Heart diseases Homeostasis Hypertrophy Hypertrophy, Left Ventricular - enzymology Hypertrophy, Left Ventricular - genetics Hypertrophy, Left Ventricular - physiopathology Hypertrophy, Left Ventricular - prevention & control Male Medicine Medicine & Public Health Mice Mice, Knockout Myocytes, Cardiac - enzymology Myocytes, Cardiac - pathology Nitric oxide Nitric Oxide - metabolism Nitrotyrosine Original Contribution Phenotype Plasmas (physics) Rodents Sarcolemma Signal Transduction Stresses Tyrosine - analogs & derivatives Tyrosine - metabolism Ventricle Ventricular Dysfunction, Left - enzymology Ventricular Dysfunction, Left - genetics Ventricular Dysfunction, Left - physiopathology Ventricular Dysfunction, Left - prevention & control Ventricular Function, Left Ventricular Remodeling |
title | Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiomyocyte%20dimethylarginine%20dimethylaminohydrolase-1%20(DDAH1)%20plays%20an%20important%20role%20in%20attenuating%20ventricular%20hypertrophy%20and%20dysfunction&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Xu,%20Xin&rft.date=2017-09-01&rft.volume=112&rft.issue=5&rft.spage=55&rft.epage=55&rft.pages=55-55&rft.issn=0300-8428&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-017-0644-z&rft_dat=%3Cproquest_pubme%3E1929438845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929438845&rft_id=info:pmid/28819685&rfr_iscdi=true |