Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns

Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-09, Vol.17 (9), p.5699-5705
Hauptverfasser: Reuther, Cordula, Mittasch, Matthäus, Naganathan, Sundar R, Grill, Stephan W, Diez, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5705
container_issue 9
container_start_page 5699
container_title Nano letters
container_volume 17
creator Reuther, Cordula
Mittasch, Matthäus
Naganathan, Sundar R
Grill, Stephan W
Diez, Stefan
description Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.
doi_str_mv 10.1021/acs.nanolett.7b02606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1930476503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930476503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a497t-78273bae665aa2006a0a117c7770c49d276c54d3414d7e3916a86011272fe92a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJydhI7HlFVWqQWkCiz5SRO6yq1g-0M_fek6sfIdDc873u6B6FHDGMMBL_I0o-NNLZRIYxZAYQCvUJDnCUQU87J9WXP0wG6834LADzJ4BYNSJ5jznM8RN9zvd40-3ha17rUyoRo1ulKm3Vk62hpg25UtNSls6Erukb5yJrow5p4ZVu7drLd6FI2B9C66EuGoJzx9-imlo1XD6c5Qj9v09VkHi8-Z--T10UsU85CzHLCkkIqSjMpCQCVIDFmJWMMypRXhNEyS6skxWnFVMIxlTkFjAkjteJEJiP0fOxtnf3tlA9ip32pmkYaZTsvME8gZTSDpEfTI9p_4r1TtWid3km3FxjEQafodYqzTnHS2ceeThe6YqeqS-jsrwfgCBziW9s50z_8f-cf1GKEKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930476503</pqid></control><display><type>article</type><title>Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns</title><source>ACS Publications</source><creator>Reuther, Cordula ; Mittasch, Matthäus ; Naganathan, Sundar R ; Grill, Stephan W ; Diez, Stefan</creator><creatorcontrib>Reuther, Cordula ; Mittasch, Matthäus ; Naganathan, Sundar R ; Grill, Stephan W ; Diez, Stefan</creatorcontrib><description>Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b02606</identifier><identifier>PMID: 28819981</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2017-09, Vol.17 (9), p.5699-5705</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a497t-78273bae665aa2006a0a117c7770c49d276c54d3414d7e3916a86011272fe92a3</citedby><cites>FETCH-LOGICAL-a497t-78273bae665aa2006a0a117c7770c49d276c54d3414d7e3916a86011272fe92a3</cites><orcidid>0000-0002-0750-8515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b02606$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b02606$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28819981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reuther, Cordula</creatorcontrib><creatorcontrib>Mittasch, Matthäus</creatorcontrib><creatorcontrib>Naganathan, Sundar R</creatorcontrib><creatorcontrib>Grill, Stephan W</creatorcontrib><creatorcontrib>Diez, Stefan</creatorcontrib><title>Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwDxDKyJJydhI7HlFVWqQWkCiz5SRO6yq1g-0M_fek6sfIdDc873u6B6FHDGMMBL_I0o-NNLZRIYxZAYQCvUJDnCUQU87J9WXP0wG6834LADzJ4BYNSJ5jznM8RN9zvd40-3ha17rUyoRo1ulKm3Vk62hpg25UtNSls6Erukb5yJrow5p4ZVu7drLd6FI2B9C66EuGoJzx9-imlo1XD6c5Qj9v09VkHi8-Z--T10UsU85CzHLCkkIqSjMpCQCVIDFmJWMMypRXhNEyS6skxWnFVMIxlTkFjAkjteJEJiP0fOxtnf3tlA9ip32pmkYaZTsvME8gZTSDpEfTI9p_4r1TtWid3km3FxjEQafodYqzTnHS2ceeThe6YqeqS-jsrwfgCBziW9s50z_8f-cf1GKEKw</recordid><startdate>20170913</startdate><enddate>20170913</enddate><creator>Reuther, Cordula</creator><creator>Mittasch, Matthäus</creator><creator>Naganathan, Sundar R</creator><creator>Grill, Stephan W</creator><creator>Diez, Stefan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0750-8515</orcidid></search><sort><creationdate>20170913</creationdate><title>Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns</title><author>Reuther, Cordula ; Mittasch, Matthäus ; Naganathan, Sundar R ; Grill, Stephan W ; Diez, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a497t-78273bae665aa2006a0a117c7770c49d276c54d3414d7e3916a86011272fe92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reuther, Cordula</creatorcontrib><creatorcontrib>Mittasch, Matthäus</creatorcontrib><creatorcontrib>Naganathan, Sundar R</creatorcontrib><creatorcontrib>Grill, Stephan W</creatorcontrib><creatorcontrib>Diez, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reuther, Cordula</au><au>Mittasch, Matthäus</au><au>Naganathan, Sundar R</au><au>Grill, Stephan W</au><au>Diez, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-09-13</date><risdate>2017</risdate><volume>17</volume><issue>9</issue><spage>5699</spage><epage>5705</epage><pages>5699-5705</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Molecular motors, highly efficient biological nanomachines, hold the potential to be employed for a wide range of nanotechnological applications. Toward this end, kinesin, dynein, or myosin motor proteins are commonly surface-immobilized within engineered environments in order to transport cargo attached to cytoskeletal filaments. Being able to flexibly control the direction of filament motion, and in particular on planar, non-topographical surfaces, has, however, remained challenging. Here, we demonstrate the applicability of a UV-laser-based ablation technique to programmably generate highly localized patterns of functional kinesin-1 motors with different shapes and sizes on PLL-g-PEG-coated polystyrene surfaces. Straight and curved motor tracks with widths of less than 500 nm could be generated in a highly reproducible manner and proved to reliably guide gliding microtubules. Though dependent on track curvature, the characteristic travel lengths of the microtubules on the tracks significantly exceeded earlier predictions. Moreover, we experimentally verified the performance of complex kinesin-1 patterns, recently designed by evolutionary algorithms for controlling the global directionality of microtubule motion on large-area substrates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28819981</pmid><doi>10.1021/acs.nanolett.7b02606</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0750-8515</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-09, Vol.17 (9), p.5699-5705
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1930476503
source ACS Publications
title Highly-Efficient Guiding of Motile Microtubules on Non-Topographical Motor Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly-Efficient%20Guiding%20of%20Motile%20Microtubules%20on%20Non-Topographical%20Motor%20Patterns&rft.jtitle=Nano%20letters&rft.au=Reuther,%20Cordula&rft.date=2017-09-13&rft.volume=17&rft.issue=9&rft.spage=5699&rft.epage=5705&rft.pages=5699-5705&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b02606&rft_dat=%3Cproquest_cross%3E1930476503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930476503&rft_id=info:pmid/28819981&rfr_iscdi=true