Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study

Boreal peatlands contain a large portion of the Earth's terrestrial organic carbon and may be particularly vulnerable to changes in climate. Temperatures in boreal regions are predicted to increase during the twenty‐first century which may accelerate changes in soil microbial processes and plan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. G. Biogeosciences 2008-09, Vol.113 (G3), p.n/a
Hauptverfasser: White, Jeffrey R., Shannon, Robert D., Weltzin, Jake F., Pastor, John, Bridgham, Scott D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boreal peatlands contain a large portion of the Earth's terrestrial organic carbon and may be particularly vulnerable to changes in climate. Temperatures in boreal regions are predicted to increase during the twenty‐first century which may accelerate changes in soil microbial processes and plant community dynamics. In particular, climate‐driven changes in plant community composition might affect the pathways and rates of methanogenesis, the plant‐mediated emission of methane, and the scavenging of methane by methanotrophic bacteria. Climate change may also affect methane cycling through changes in pore water chemistry. To date, these feedbacks have not been incorporated into the carbon cycling components of climate models. We investigated the effects of soil warming and water table manipulations on methane cycling in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and fen received infrared warming treatments crossed with water table treatments for 6 years. In years 5 and 6, concentrations, fluxes, and isotopic compositions of methane were measured along with aboveground and belowground net primary productivity and pore water concentrations of acetate, sulfate, ammonium, nitrate, and dissolved organic carbon. Water table level was the dominant control over methane flux in the fen mesocosms, likely through its effect on methane oxidation rates. However, pore water chemistry and plant productivity were important secondary factors in explaining methane flux in the fen mesocosms, and these factors appeared to be the predominant controls over methane flux in the bog mesocosms. The water table and IR treatments had large effects on pore water chemistry and plant productivity, so the indirect effects of climate change appear to be just as important as the direct effects of changing temperature and water table level in controlling future methane fluxes from northern peatlands. Pore water sulfate, ammonium, nitrate, and acetate had a relatively consistent negative relationship with methane emissions, pore water DOC had a positive relationship with methane emissions, and BNPP had mixed effects. The bog mesocosms had much higher methane emissions and pore water methane concentrations than the fen mesocosms, despite a much lower average water table level and peat that is a poor substrate for methanogenesis. We suggest that the relatively high methane fluxes in the bog mesocosms can be explained through their low co
ISSN:0148-0227
2156-2202
DOI:10.1029/2007JG000609