Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control
Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2008, Vol.32 (1), p.230-243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 1 |
container_start_page | 230 |
container_title | Computers & chemical engineering |
container_volume | 32 |
creator | Doan, Xuan-Tien Srinivasan, Rajagopalan |
description | Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation. |
doi_str_mv | 10.1016/j.compchemeng.2007.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19297547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009813540700141X</els_id><sourcerecordid>19297547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP4QLtxanbZr2iCa-pEm7wDlKU3fLaJOSZJP493QUJI5c7IOf15YfQm4YpAxYebdLtRtGvcUB7SbNAEQKPAUGJ2TBKpEnRS74KVkA1FXCcl6ck4sQdgCQFVW1IO9r2xuLdHDWROeN3VDX0WHfR5OMWxWQNirqLR290xgCBroPR-h7ljRTaWf6oLxREWmIKpoQjVb9b4hqZ6N3_RU561Qf8PqnX5K3x4fX5XOyWj-9LO9XiS5YFRORYwEdNqyptQJectGINm8UB8aRo6oVNlB2TFeacyw5FDk0hWqRt1lZliq_JLfz3un-xx5DlIMJGvteWXT7IFmd1YIXYgLrGdTeheCxk6M3g_KfkoE86pU7-UevPOqVwOWkd8ou5yxOnxwMehm0QauxNR51lK0z_9jyBZyqjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19297547</pqid></control><display><type>article</type><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</creator><creatorcontrib>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</creatorcontrib><description>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2007.05.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dynamic PCA ; Dynamic time warping ; Feature synchronization ; Multi-stage process ; Singular point</subject><ispartof>Computers & chemical engineering, 2008, Vol.32 (1), p.230-243</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</citedby><cites>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2007.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Doan, Xuan-Tien</creatorcontrib><creatorcontrib>Srinivasan, Rajagopalan</creatorcontrib><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><title>Computers & chemical engineering</title><description>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</description><subject>Dynamic PCA</subject><subject>Dynamic time warping</subject><subject>Feature synchronization</subject><subject>Multi-stage process</subject><subject>Singular point</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP4QLtxanbZr2iCa-pEm7wDlKU3fLaJOSZJP493QUJI5c7IOf15YfQm4YpAxYebdLtRtGvcUB7SbNAEQKPAUGJ2TBKpEnRS74KVkA1FXCcl6ck4sQdgCQFVW1IO9r2xuLdHDWROeN3VDX0WHfR5OMWxWQNirqLR290xgCBroPR-h7ljRTaWf6oLxREWmIKpoQjVb9b4hqZ6N3_RU561Qf8PqnX5K3x4fX5XOyWj-9LO9XiS5YFRORYwEdNqyptQJectGINm8UB8aRo6oVNlB2TFeacyw5FDk0hWqRt1lZliq_JLfz3un-xx5DlIMJGvteWXT7IFmd1YIXYgLrGdTeheCxk6M3g_KfkoE86pU7-UevPOqVwOWkd8ou5yxOnxwMehm0QauxNR51lK0z_9jyBZyqjUo</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Doan, Xuan-Tien</creator><creator>Srinivasan, Rajagopalan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2008</creationdate><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><author>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Dynamic PCA</topic><topic>Dynamic time warping</topic><topic>Feature synchronization</topic><topic>Multi-stage process</topic><topic>Singular point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Xuan-Tien</creatorcontrib><creatorcontrib>Srinivasan, Rajagopalan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Xuan-Tien</au><au>Srinivasan, Rajagopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</atitle><jtitle>Computers & chemical engineering</jtitle><date>2008</date><risdate>2008</risdate><volume>32</volume><issue>1</issue><spage>230</spage><epage>243</epage><pages>230-243</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2007.05.010</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2008, Vol.32 (1), p.230-243 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_19297547 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Dynamic PCA Dynamic time warping Feature synchronization Multi-stage process Singular point |
title | Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20of%20multi-phase%20batch%20processes%20using%20phase-based%20multivariate%20statistical%20process%20control&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Doan,%20Xuan-Tien&rft.date=2008&rft.volume=32&rft.issue=1&rft.spage=230&rft.epage=243&rft.pages=230-243&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2007.05.010&rft_dat=%3Cproquest_cross%3E19297547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19297547&rft_id=info:pmid/&rft_els_id=S009813540700141X&rfr_iscdi=true |