Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control

Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2008, Vol.32 (1), p.230-243
Hauptverfasser: Doan, Xuan-Tien, Srinivasan, Rajagopalan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 1
container_start_page 230
container_title Computers & chemical engineering
container_volume 32
creator Doan, Xuan-Tien
Srinivasan, Rajagopalan
description Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.
doi_str_mv 10.1016/j.compchemeng.2007.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19297547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009813540700141X</els_id><sourcerecordid>19297547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP4QLtxanbZr2iCa-pEm7wDlKU3fLaJOSZJP493QUJI5c7IOf15YfQm4YpAxYebdLtRtGvcUB7SbNAEQKPAUGJ2TBKpEnRS74KVkA1FXCcl6ck4sQdgCQFVW1IO9r2xuLdHDWROeN3VDX0WHfR5OMWxWQNirqLR290xgCBroPR-h7ljRTaWf6oLxREWmIKpoQjVb9b4hqZ6N3_RU561Qf8PqnX5K3x4fX5XOyWj-9LO9XiS5YFRORYwEdNqyptQJectGINm8UB8aRo6oVNlB2TFeacyw5FDk0hWqRt1lZliq_JLfz3un-xx5DlIMJGvteWXT7IFmd1YIXYgLrGdTeheCxk6M3g_KfkoE86pU7-UevPOqVwOWkd8ou5yxOnxwMehm0QauxNR51lK0z_9jyBZyqjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19297547</pqid></control><display><type>article</type><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</creator><creatorcontrib>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</creatorcontrib><description>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2007.05.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dynamic PCA ; Dynamic time warping ; Feature synchronization ; Multi-stage process ; Singular point</subject><ispartof>Computers &amp; chemical engineering, 2008, Vol.32 (1), p.230-243</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</citedby><cites>FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2007.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Doan, Xuan-Tien</creatorcontrib><creatorcontrib>Srinivasan, Rajagopalan</creatorcontrib><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><title>Computers &amp; chemical engineering</title><description>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</description><subject>Dynamic PCA</subject><subject>Dynamic time warping</subject><subject>Feature synchronization</subject><subject>Multi-stage process</subject><subject>Singular point</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP4QLtxanbZr2iCa-pEm7wDlKU3fLaJOSZJP493QUJI5c7IOf15YfQm4YpAxYebdLtRtGvcUB7SbNAEQKPAUGJ2TBKpEnRS74KVkA1FXCcl6ck4sQdgCQFVW1IO9r2xuLdHDWROeN3VDX0WHfR5OMWxWQNirqLR290xgCBroPR-h7ljRTaWf6oLxREWmIKpoQjVb9b4hqZ6N3_RU561Qf8PqnX5K3x4fX5XOyWj-9LO9XiS5YFRORYwEdNqyptQJectGINm8UB8aRo6oVNlB2TFeacyw5FDk0hWqRt1lZliq_JLfz3un-xx5DlIMJGvteWXT7IFmd1YIXYgLrGdTeheCxk6M3g_KfkoE86pU7-UevPOqVwOWkd8ou5yxOnxwMehm0QauxNR51lK0z_9jyBZyqjUo</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Doan, Xuan-Tien</creator><creator>Srinivasan, Rajagopalan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2008</creationdate><title>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</title><author>Doan, Xuan-Tien ; Srinivasan, Rajagopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-73e40feb1b9ca05657b7d3ba5015e5ea9aeb06f1c8c55e650430b4ade5d2666a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Dynamic PCA</topic><topic>Dynamic time warping</topic><topic>Feature synchronization</topic><topic>Multi-stage process</topic><topic>Singular point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Xuan-Tien</creatorcontrib><creatorcontrib>Srinivasan, Rajagopalan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Xuan-Tien</au><au>Srinivasan, Rajagopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2008</date><risdate>2008</risdate><volume>32</volume><issue>1</issue><spage>230</spage><epage>243</epage><pages>230-243</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Online monitoring of batch processes using multivariate statistical methods has attracted enormous research interests due to its practical importance. In this paper, we focus on an important issue that continues to confound online batch process monitoring—run-to-run variations that do not confirm to a normal distribution around a reference trajectory. Here, we show that a phase-based decomposition of the trajectory offers a systematic way to overcome this challenge. In our approach, phase changes are detected online using Singular points in key variables. Run-to-run variations among different instances of a phase are synchronized by using time warping. Finally, phased-based multivariate statistical process control models are used to monitor the execution of the batch and detect abnormalities. This phase-based monitoring approach is robust to run-to-run variations arising from changes in initial conditions and event timings as is illustrated using a well-known fermentation process simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2007.05.010</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2008, Vol.32 (1), p.230-243
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_19297547
source Elsevier ScienceDirect Journals Complete
subjects Dynamic PCA
Dynamic time warping
Feature synchronization
Multi-stage process
Singular point
title Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20of%20multi-phase%20batch%20processes%20using%20phase-based%20multivariate%20statistical%20process%20control&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Doan,%20Xuan-Tien&rft.date=2008&rft.volume=32&rft.issue=1&rft.spage=230&rft.epage=243&rft.pages=230-243&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2007.05.010&rft_dat=%3Cproquest_cross%3E19297547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19297547&rft_id=info:pmid/&rft_els_id=S009813540700141X&rfr_iscdi=true