Near real-time automatic moment magnitude estimation
In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . Th...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2014-02, Vol.12 (1), p.185-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Bulletin of earthquake engineering |
container_volume | 12 |
creator | Gallo, A. Costa, G. Suhadolc, P. |
description | In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events
M
W
≈
3
. The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (
1986
), the seismic moment and the first estimate of the corner frequency,
f
0
, derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with
M
W
≥
3
. The estimates of
f
0
are less reliable. The results show a scatter, principally for small events with
M
W
≤
3
, probably due to site effects and inaccurate locations. |
doi_str_mv | 10.1007/s10518-013-9565-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929472052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929472052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosouK7-AG8FEbxEM2mTNEdZ_IJFLwrewrSdLl36sSYtrP_erBURQTzNwPvMOzNvFJ0CvwTO9ZUHLiFjHBJmpJJsuxfNQOqEQSrV_mfPmVbwehgdeb_mXEht-CxKHwld7AgbNtQtxTgOfYtDXcRt31I3xC2uunoYS4rJByJIfXccHVTYeDr5qvPo5fbmeXHPlk93D4vrJUPJ5cBKJUnIrEDEnAgSTbnIOECZlAXHEqEkkWa5qXKqFFel0oaULpFErgJRJPPoYvLduP5tDPttW_uCmgY76kdvwQiTasGl-B9VEpLMZEYH9OwXuu5H14VHLKRBT00qeKBgogrXe--oshsX3nfvFrjdRW6nyG2I3O4it9swc_7ljL7ApnLYFbX_HhRZokSaZIETE-eD1K3I_bjgT_MPY62RDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497349420</pqid></control><display><type>article</type><title>Near real-time automatic moment magnitude estimation</title><source>SpringerLink Journals</source><creator>Gallo, A. ; Costa, G. ; Suhadolc, P.</creator><creatorcontrib>Gallo, A. ; Costa, G. ; Suhadolc, P.</creatorcontrib><description>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events
M
W
≈
3
. The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (
1986
), the seismic moment and the first estimate of the corner frequency,
f
0
, derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with
M
W
≥
3
. The estimates of
f
0
are less reliable. The results show a scatter, principally for small events with
M
W
≤
3
, probably due to site effects and inaccurate locations.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-013-9565-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accelerometers ; Automation ; Civil Engineering ; Corners ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Earthquake damage ; Earthquakes ; Earthquakes, seismology ; Environmental Engineering/Biotechnology ; Estimates ; Exact sciences and technology ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Hydrogeology ; Internal geophysics ; Networks ; Original Research Paper ; Real time ; Recording ; Seismic activity ; Seismic phenomena ; Seismology ; Structural Geology</subject><ispartof>Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.185-202</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</citedby><cites>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-013-9565-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-013-9565-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28362438$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallo, A.</creatorcontrib><creatorcontrib>Costa, G.</creatorcontrib><creatorcontrib>Suhadolc, P.</creatorcontrib><title>Near real-time automatic moment magnitude estimation</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events
M
W
≈
3
. The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (
1986
), the seismic moment and the first estimate of the corner frequency,
f
0
, derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with
M
W
≥
3
. The estimates of
f
0
are less reliable. The results show a scatter, principally for small events with
M
W
≤
3
, probably due to site effects and inaccurate locations.</description><subject>Accelerometers</subject><subject>Automation</subject><subject>Civil Engineering</subject><subject>Corners</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>Earthquakes, seismology</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Internal geophysics</subject><subject>Networks</subject><subject>Original Research Paper</subject><subject>Real time</subject><subject>Recording</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Structural Geology</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhosouK7-AG8FEbxEM2mTNEdZ_IJFLwrewrSdLl36sSYtrP_erBURQTzNwPvMOzNvFJ0CvwTO9ZUHLiFjHBJmpJJsuxfNQOqEQSrV_mfPmVbwehgdeb_mXEht-CxKHwld7AgbNtQtxTgOfYtDXcRt31I3xC2uunoYS4rJByJIfXccHVTYeDr5qvPo5fbmeXHPlk93D4vrJUPJ5cBKJUnIrEDEnAgSTbnIOECZlAXHEqEkkWa5qXKqFFel0oaULpFErgJRJPPoYvLduP5tDPttW_uCmgY76kdvwQiTasGl-B9VEpLMZEYH9OwXuu5H14VHLKRBT00qeKBgogrXe--oshsX3nfvFrjdRW6nyG2I3O4it9swc_7ljL7ApnLYFbX_HhRZokSaZIETE-eD1K3I_bjgT_MPY62RDw</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Gallo, A.</creator><creator>Costa, G.</creator><creator>Suhadolc, P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20140201</creationdate><title>Near real-time automatic moment magnitude estimation</title><author>Gallo, A. ; Costa, G. ; Suhadolc, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerometers</topic><topic>Automation</topic><topic>Civil Engineering</topic><topic>Corners</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>Earthquakes, seismology</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Internal geophysics</topic><topic>Networks</topic><topic>Original Research Paper</topic><topic>Real time</topic><topic>Recording</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallo, A.</creatorcontrib><creatorcontrib>Costa, G.</creatorcontrib><creatorcontrib>Suhadolc, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallo, A.</au><au>Costa, G.</au><au>Suhadolc, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near real-time automatic moment magnitude estimation</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>185</spage><epage>202</epage><pages>185-202</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events
M
W
≈
3
. The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (
1986
), the seismic moment and the first estimate of the corner frequency,
f
0
, derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with
M
W
≥
3
. The estimates of
f
0
are less reliable. The results show a scatter, principally for small events with
M
W
≤
3
, probably due to site effects and inaccurate locations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-013-9565-x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-761X |
ispartof | Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.185-202 |
issn | 1570-761X 1573-1456 |
language | eng |
recordid | cdi_proquest_miscellaneous_1929472052 |
source | SpringerLink Journals |
subjects | Accelerometers Automation Civil Engineering Corners Earth and Environmental Science Earth Sciences Earth, ocean, space Earthquake damage Earthquakes Earthquakes, seismology Environmental Engineering/Biotechnology Estimates Exact sciences and technology Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Ground motion Hydrogeology Internal geophysics Networks Original Research Paper Real time Recording Seismic activity Seismic phenomena Seismology Structural Geology |
title | Near real-time automatic moment magnitude estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%20real-time%20automatic%20moment%20magnitude%20estimation&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Gallo,%20A.&rft.date=2014-02-01&rft.volume=12&rft.issue=1&rft.spage=185&rft.epage=202&rft.pages=185-202&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-013-9565-x&rft_dat=%3Cproquest_cross%3E1929472052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1497349420&rft_id=info:pmid/&rfr_iscdi=true |