Near real-time automatic moment magnitude estimation

In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2014-02, Vol.12 (1), p.185-202
Hauptverfasser: Gallo, A., Costa, G., Suhadolc, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 1
container_start_page 185
container_title Bulletin of earthquake engineering
container_volume 12
creator Gallo, A.
Costa, G.
Suhadolc, P.
description In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews ( 1986 ), the seismic moment and the first estimate of the corner frequency, f 0 , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with M W ≥ 3 . The estimates of f 0 are less reliable. The results show a scatter, principally for small events with M W ≤ 3 , probably due to site effects and inaccurate locations.
doi_str_mv 10.1007/s10518-013-9565-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929472052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929472052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosouK7-AG8FEbxEM2mTNEdZ_IJFLwrewrSdLl36sSYtrP_erBURQTzNwPvMOzNvFJ0CvwTO9ZUHLiFjHBJmpJJsuxfNQOqEQSrV_mfPmVbwehgdeb_mXEht-CxKHwld7AgbNtQtxTgOfYtDXcRt31I3xC2uunoYS4rJByJIfXccHVTYeDr5qvPo5fbmeXHPlk93D4vrJUPJ5cBKJUnIrEDEnAgSTbnIOECZlAXHEqEkkWa5qXKqFFel0oaULpFErgJRJPPoYvLduP5tDPttW_uCmgY76kdvwQiTasGl-B9VEpLMZEYH9OwXuu5H14VHLKRBT00qeKBgogrXe--oshsX3nfvFrjdRW6nyG2I3O4it9swc_7ljL7ApnLYFbX_HhRZokSaZIETE-eD1K3I_bjgT_MPY62RDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497349420</pqid></control><display><type>article</type><title>Near real-time automatic moment magnitude estimation</title><source>SpringerLink Journals</source><creator>Gallo, A. ; Costa, G. ; Suhadolc, P.</creator><creatorcontrib>Gallo, A. ; Costa, G. ; Suhadolc, P.</creatorcontrib><description>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews ( 1986 ), the seismic moment and the first estimate of the corner frequency, f 0 , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with M W ≥ 3 . The estimates of f 0 are less reliable. The results show a scatter, principally for small events with M W ≤ 3 , probably due to site effects and inaccurate locations.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-013-9565-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accelerometers ; Automation ; Civil Engineering ; Corners ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Earthquake damage ; Earthquakes ; Earthquakes, seismology ; Environmental Engineering/Biotechnology ; Estimates ; Exact sciences and technology ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Internal geophysics ; Networks ; Original Research Paper ; Real time ; Recording ; Seismic activity ; Seismic phenomena ; Seismology ; Structural Geology</subject><ispartof>Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.185-202</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</citedby><cites>FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-013-9565-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-013-9565-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28362438$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallo, A.</creatorcontrib><creatorcontrib>Costa, G.</creatorcontrib><creatorcontrib>Suhadolc, P.</creatorcontrib><title>Near real-time automatic moment magnitude estimation</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews ( 1986 ), the seismic moment and the first estimate of the corner frequency, f 0 , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with M W ≥ 3 . The estimates of f 0 are less reliable. The results show a scatter, principally for small events with M W ≤ 3 , probably due to site effects and inaccurate locations.</description><subject>Accelerometers</subject><subject>Automation</subject><subject>Civil Engineering</subject><subject>Corners</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>Earthquakes, seismology</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Internal geophysics</subject><subject>Networks</subject><subject>Original Research Paper</subject><subject>Real time</subject><subject>Recording</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Seismology</subject><subject>Structural Geology</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhosouK7-AG8FEbxEM2mTNEdZ_IJFLwrewrSdLl36sSYtrP_erBURQTzNwPvMOzNvFJ0CvwTO9ZUHLiFjHBJmpJJsuxfNQOqEQSrV_mfPmVbwehgdeb_mXEht-CxKHwld7AgbNtQtxTgOfYtDXcRt31I3xC2uunoYS4rJByJIfXccHVTYeDr5qvPo5fbmeXHPlk93D4vrJUPJ5cBKJUnIrEDEnAgSTbnIOECZlAXHEqEkkWa5qXKqFFel0oaULpFErgJRJPPoYvLduP5tDPttW_uCmgY76kdvwQiTasGl-B9VEpLMZEYH9OwXuu5H14VHLKRBT00qeKBgogrXe--oshsX3nfvFrjdRW6nyG2I3O4it9swc_7ljL7ApnLYFbX_HhRZokSaZIETE-eD1K3I_bjgT_MPY62RDw</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Gallo, A.</creator><creator>Costa, G.</creator><creator>Suhadolc, P.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope></search><sort><creationdate>20140201</creationdate><title>Near real-time automatic moment magnitude estimation</title><author>Gallo, A. ; Costa, G. ; Suhadolc, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-d65e258caaabee137eb28011d3dc0ada1de248b9fbef606d679e67dae2b6dc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accelerometers</topic><topic>Automation</topic><topic>Civil Engineering</topic><topic>Corners</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>Earthquakes, seismology</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Internal geophysics</topic><topic>Networks</topic><topic>Original Research Paper</topic><topic>Real time</topic><topic>Recording</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Seismology</topic><topic>Structural Geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallo, A.</creatorcontrib><creatorcontrib>Costa, G.</creatorcontrib><creatorcontrib>Suhadolc, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallo, A.</au><au>Costa, G.</au><au>Suhadolc, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near real-time automatic moment magnitude estimation</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>185</spage><epage>202</epage><pages>185-202</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events M W ≈ 3 . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews ( 1986 ), the seismic moment and the first estimate of the corner frequency, f 0 , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with M W ≥ 3 . The estimates of f 0 are less reliable. The results show a scatter, principally for small events with M W ≤ 3 , probably due to site effects and inaccurate locations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-013-9565-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-761X
ispartof Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.185-202
issn 1570-761X
1573-1456
language eng
recordid cdi_proquest_miscellaneous_1929472052
source SpringerLink Journals
subjects Accelerometers
Automation
Civil Engineering
Corners
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Earthquake damage
Earthquakes
Earthquakes, seismology
Environmental Engineering/Biotechnology
Estimates
Exact sciences and technology
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Internal geophysics
Networks
Original Research Paper
Real time
Recording
Seismic activity
Seismic phenomena
Seismology
Structural Geology
title Near real-time automatic moment magnitude estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%20real-time%20automatic%20moment%20magnitude%20estimation&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Gallo,%20A.&rft.date=2014-02-01&rft.volume=12&rft.issue=1&rft.spage=185&rft.epage=202&rft.pages=185-202&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-013-9565-x&rft_dat=%3Cproquest_cross%3E1929472052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1497349420&rft_id=info:pmid/&rfr_iscdi=true