Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis

•Methylglyoxal (MG) stimulates the expression of the gene encoding methylglyoxal synthase (mgsA) in Bacillus subtilis.•MgsA-overexpressing cells show remarkable elongation compared with mgsA-deficient cells.•SpeB and speE, which encode agmatinase and spermidine synthase, respectively, induce MG bios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2017-10, Vol.91 (Pt A), p.14-28
Hauptverfasser: Shin, Sang-Min, Song, Sung-Hyun, Lee, Jin-Woo, Kwak, Min-Kyu, Kang, Sa-Ouk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue Pt A
container_start_page 14
container_title The international journal of biochemistry & cell biology
container_volume 91
creator Shin, Sang-Min
Song, Sung-Hyun
Lee, Jin-Woo
Kwak, Min-Kyu
Kang, Sa-Ouk
description •Methylglyoxal (MG) stimulates the expression of the gene encoding methylglyoxal synthase (mgsA) in Bacillus subtilis.•MgsA-overexpressing cells show remarkable elongation compared with mgsA-deficient cells.•SpeB and speE, which encode agmatinase and spermidine synthase, respectively, induce MG biosynthesis.•SpeB- and speE-overexpressing cells have an elongated, rod-shaped morphology.•Expression of mgsA and polyamine genes is regulated by clpP-linked spx. Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P
doi_str_mv 10.1016/j.biocel.2017.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929104020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272517301929</els_id><sourcerecordid>1929104020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-fd9665a88170507fa78bf5ef3177a4bbcf479de4b020643262d600eee4949d803</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVuIiDzgDxDykk03ZffD7g0SRECQgrJJ1pbbrp545LYH2x1lfoDvxpMJSGxYuSydW7eqblW9pdBQoMOHbTPZoNE1DChvQDQA_YvqjAou6l7w_mWp257XjLP-tDpPaQsAtGftq-qUCQF8ADirfv3AfL93G7cPj8qRtPf5XiUkETerUxkTKRaOoAt-o7INnjxYRZTLGJ--iYT5CSl0JMs_zZQ3JO0wLtZYj0QHn9FnYj35rLQtkkTSOmXrbHpdnczKJXzz_F5Ud1-_3F5e1dc3375ffrquNeM817MZh6FXQlAOPfBZcTHNPc4t5Vx106Tnjo8GuwkYDF3LBmbKlojYjd1oBLQX1ftj310MP1dMWS42HcZXHsOaJB3ZSKEr8oJ2R1THkFLEWe6iXVTcSwrykIDcymMC8pCABCFLAkX27tlhnRY0f0V_Tl6Aj0cAy54PFqNM2qLXaGxEnaUJ9v8OvwEg_pzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929104020</pqid></control><display><type>article</type><title>Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shin, Sang-Min ; Song, Sung-Hyun ; Lee, Jin-Woo ; Kwak, Min-Kyu ; Kang, Sa-Ouk</creator><creatorcontrib>Shin, Sang-Min ; Song, Sung-Hyun ; Lee, Jin-Woo ; Kwak, Min-Kyu ; Kang, Sa-Ouk</creatorcontrib><description>•Methylglyoxal (MG) stimulates the expression of the gene encoding methylglyoxal synthase (mgsA) in Bacillus subtilis.•MgsA-overexpressing cells show remarkable elongation compared with mgsA-deficient cells.•SpeB and speE, which encode agmatinase and spermidine synthase, respectively, induce MG biosynthesis.•SpeB- and speE-overexpressing cells have an elongated, rod-shaped morphology.•Expression of mgsA and polyamine genes is regulated by clpP-linked spx. Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P&lt;0.05) and 3.24±0.73μm (P&lt;0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA−) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB− and speE−) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA− and speEOE/mgsA−) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2017.08.005</identifier><identifier>PMID: 28807600</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Bacillus subtilis ; Bacillus subtilis - cytology ; Bacillus subtilis - drug effects ; Bacillus subtilis - enzymology ; Bacillus subtilis - metabolism ; Carbon-Oxygen Lyases - genetics ; Carbon-Oxygen Lyases - metabolism ; Cell elongation ; Cytoskeleton protein ; Methylglyoxal ; Methylglyoxal synthase ; Pyruvaldehyde - metabolism ; Pyruvaldehyde - pharmacology ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Spermidine ; Spermidine - metabolism ; Spermidine - pharmacology</subject><ispartof>The international journal of biochemistry &amp; cell biology, 2017-10, Vol.91 (Pt A), p.14-28</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-fd9665a88170507fa78bf5ef3177a4bbcf479de4b020643262d600eee4949d803</citedby><cites>FETCH-LOGICAL-c277t-fd9665a88170507fa78bf5ef3177a4bbcf479de4b020643262d600eee4949d803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2017.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28807600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Sang-Min</creatorcontrib><creatorcontrib>Song, Sung-Hyun</creatorcontrib><creatorcontrib>Lee, Jin-Woo</creatorcontrib><creatorcontrib>Kwak, Min-Kyu</creatorcontrib><creatorcontrib>Kang, Sa-Ouk</creatorcontrib><title>Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis</title><title>The international journal of biochemistry &amp; cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>•Methylglyoxal (MG) stimulates the expression of the gene encoding methylglyoxal synthase (mgsA) in Bacillus subtilis.•MgsA-overexpressing cells show remarkable elongation compared with mgsA-deficient cells.•SpeB and speE, which encode agmatinase and spermidine synthase, respectively, induce MG biosynthesis.•SpeB- and speE-overexpressing cells have an elongated, rod-shaped morphology.•Expression of mgsA and polyamine genes is regulated by clpP-linked spx. Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P&lt;0.05) and 3.24±0.73μm (P&lt;0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA−) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB− and speE−) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA− and speEOE/mgsA−) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.</description><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - drug effects</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - metabolism</subject><subject>Carbon-Oxygen Lyases - genetics</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Cell elongation</subject><subject>Cytoskeleton protein</subject><subject>Methylglyoxal</subject><subject>Methylglyoxal synthase</subject><subject>Pyruvaldehyde - metabolism</subject><subject>Pyruvaldehyde - pharmacology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Spermidine</subject><subject>Spermidine - metabolism</subject><subject>Spermidine - pharmacology</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRVuIiDzgDxDykk03ZffD7g0SRECQgrJJ1pbbrp545LYH2x1lfoDvxpMJSGxYuSydW7eqblW9pdBQoMOHbTPZoNE1DChvQDQA_YvqjAou6l7w_mWp257XjLP-tDpPaQsAtGftq-qUCQF8ADirfv3AfL93G7cPj8qRtPf5XiUkETerUxkTKRaOoAt-o7INnjxYRZTLGJ--iYT5CSl0JMs_zZQ3JO0wLtZYj0QHn9FnYj35rLQtkkTSOmXrbHpdnczKJXzz_F5Ud1-_3F5e1dc3375ffrquNeM817MZh6FXQlAOPfBZcTHNPc4t5Vx106Tnjo8GuwkYDF3LBmbKlojYjd1oBLQX1ftj310MP1dMWS42HcZXHsOaJB3ZSKEr8oJ2R1THkFLEWe6iXVTcSwrykIDcymMC8pCABCFLAkX27tlhnRY0f0V_Tl6Aj0cAy54PFqNM2qLXaGxEnaUJ9v8OvwEg_pzE</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Shin, Sang-Min</creator><creator>Song, Sung-Hyun</creator><creator>Lee, Jin-Woo</creator><creator>Kwak, Min-Kyu</creator><creator>Kang, Sa-Ouk</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis</title><author>Shin, Sang-Min ; Song, Sung-Hyun ; Lee, Jin-Woo ; Kwak, Min-Kyu ; Kang, Sa-Ouk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-fd9665a88170507fa78bf5ef3177a4bbcf479de4b020643262d600eee4949d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - drug effects</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - metabolism</topic><topic>Carbon-Oxygen Lyases - genetics</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Cell elongation</topic><topic>Cytoskeleton protein</topic><topic>Methylglyoxal</topic><topic>Methylglyoxal synthase</topic><topic>Pyruvaldehyde - metabolism</topic><topic>Pyruvaldehyde - pharmacology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Spermidine</topic><topic>Spermidine - metabolism</topic><topic>Spermidine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Sang-Min</creatorcontrib><creatorcontrib>Song, Sung-Hyun</creatorcontrib><creatorcontrib>Lee, Jin-Woo</creatorcontrib><creatorcontrib>Kwak, Min-Kyu</creatorcontrib><creatorcontrib>Kang, Sa-Ouk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of biochemistry &amp; cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Sang-Min</au><au>Song, Sung-Hyun</au><au>Lee, Jin-Woo</au><au>Kwak, Min-Kyu</au><au>Kang, Sa-Ouk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis</atitle><jtitle>The international journal of biochemistry &amp; cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>91</volume><issue>Pt A</issue><spage>14</spage><epage>28</epage><pages>14-28</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>•Methylglyoxal (MG) stimulates the expression of the gene encoding methylglyoxal synthase (mgsA) in Bacillus subtilis.•MgsA-overexpressing cells show remarkable elongation compared with mgsA-deficient cells.•SpeB and speE, which encode agmatinase and spermidine synthase, respectively, induce MG biosynthesis.•SpeB- and speE-overexpressing cells have an elongated, rod-shaped morphology.•Expression of mgsA and polyamine genes is regulated by clpP-linked spx. Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P&lt;0.05) and 3.24±0.73μm (P&lt;0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA−) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB− and speE−) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA− and speEOE/mgsA−) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28807600</pmid><doi>10.1016/j.biocel.2017.08.005</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1357-2725
ispartof The international journal of biochemistry & cell biology, 2017-10, Vol.91 (Pt A), p.14-28
issn 1357-2725
1878-5875
language eng
recordid cdi_proquest_miscellaneous_1929104020
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacillus subtilis
Bacillus subtilis - cytology
Bacillus subtilis - drug effects
Bacillus subtilis - enzymology
Bacillus subtilis - metabolism
Carbon-Oxygen Lyases - genetics
Carbon-Oxygen Lyases - metabolism
Cell elongation
Cytoskeleton protein
Methylglyoxal
Methylglyoxal synthase
Pyruvaldehyde - metabolism
Pyruvaldehyde - pharmacology
RNA, Messenger - genetics
RNA, Messenger - metabolism
Spermidine
Spermidine - metabolism
Spermidine - pharmacology
title Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methylglyoxal%20synthase%20regulates%20cell%20elongation%20via%20alterations%20of%20cellular%20methylglyoxal%20and%20spermidine%20content%20in%20Bacillus%20subtilis&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Shin,%20Sang-Min&rft.date=2017-10&rft.volume=91&rft.issue=Pt%20A&rft.spage=14&rft.epage=28&rft.pages=14-28&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2017.08.005&rft_dat=%3Cproquest_cross%3E1929104020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929104020&rft_id=info:pmid/28807600&rft_els_id=S1357272517301929&rfr_iscdi=true