BRCA1/2 missense mutations and the value of in-silico analyses

The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medical genetics 2017-11, Vol.60 (11), p.572-577
Hauptverfasser: Sadowski, Carolin E., Kohlstedt, Daniela, Meisel, Cornelia, Keller, Katja, Becker, Kerstin, Mackenroth, Luisa, Rump, Andreas, Schröck, Evelin, Wimberger, Pauline, Kast, Karin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 11
container_start_page 572
container_title European journal of medical genetics
container_volume 60
creator Sadowski, Carolin E.
Kohlstedt, Daniela
Meisel, Cornelia
Keller, Katja
Becker, Kerstin
Mackenroth, Luisa
Rump, Andreas
Schröck, Evelin
Wimberger, Pauline
Kast, Karin
description The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling.
doi_str_mv 10.1016/j.ejmg.2017.08.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1929103853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1769721216305687</els_id><sourcerecordid>1929103853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ff82ac79a890bf8dc1e7983ac6e749b1f4cfb18715d6c4faa68da2319700fbe33</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6B1xIl25ak7TNA0QYB18wIIiuQ5reaEofY9MOzL83ZUaXru6Fe87hng-hS4ITggm7qRKoms-EYsITLBKM8yM0J4KLGItMHoedMxlzSugMnXlfYZwKQuUpmlEhMBeMzdHd_dtqSW5o1DjvofUQNeOgB9e1PtJtGQ1fEG11PULU2ci1sXe1M1046XrnwZ-jE6trDxeHuUAfjw_vq-d4_fr0slquY5PmbIitFVQbLrWQuLCiNAS4FKk2DHgmC2IzY4vwOclLZjKrNROlpimRHGNbQJou0PU-d9N33yP4QYV_DdS1bqEbvSKSShLq5ZOU7qWm77zvwapN7xrd7xTBauKmKjVxUxM3hYUK3ILp6pA_Fg2Uf5ZfUEFwuxdAaLl10CtvHLQGSteDGVTZuf_yfwBLkX3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929103853</pqid></control><display><type>article</type><title>BRCA1/2 missense mutations and the value of in-silico analyses</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sadowski, Carolin E. ; Kohlstedt, Daniela ; Meisel, Cornelia ; Keller, Katja ; Becker, Kerstin ; Mackenroth, Luisa ; Rump, Andreas ; Schröck, Evelin ; Wimberger, Pauline ; Kast, Karin</creator><creatorcontrib>Sadowski, Carolin E. ; Kohlstedt, Daniela ; Meisel, Cornelia ; Keller, Katja ; Becker, Kerstin ; Mackenroth, Luisa ; Rump, Andreas ; Schröck, Evelin ; Wimberger, Pauline ; Kast, Karin</creatorcontrib><description>The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling.</description><identifier>ISSN: 1769-7212</identifier><identifier>EISSN: 1878-0849</identifier><identifier>DOI: 10.1016/j.ejmg.2017.08.005</identifier><identifier>PMID: 28807866</identifier><language>eng</language><publisher>Netherlands: Elsevier Masson SAS</publisher><subject>BRCA1 Protein - genetics ; BRCA2 Protein - genetics ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Computer Simulation ; Female ; Genetic Testing - methods ; Humans ; Mutation, Missense ; Ovarian Neoplasms - diagnosis ; Ovarian Neoplasms - genetics ; Predictive Value of Tests</subject><ispartof>European journal of medical genetics, 2017-11, Vol.60 (11), p.572-577</ispartof><rights>2017 Elsevier Masson SAS</rights><rights>Copyright © 2017 Elsevier Masson SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ff82ac79a890bf8dc1e7983ac6e749b1f4cfb18715d6c4faa68da2319700fbe33</citedby><cites>FETCH-LOGICAL-c356t-ff82ac79a890bf8dc1e7983ac6e749b1f4cfb18715d6c4faa68da2319700fbe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejmg.2017.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28807866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadowski, Carolin E.</creatorcontrib><creatorcontrib>Kohlstedt, Daniela</creatorcontrib><creatorcontrib>Meisel, Cornelia</creatorcontrib><creatorcontrib>Keller, Katja</creatorcontrib><creatorcontrib>Becker, Kerstin</creatorcontrib><creatorcontrib>Mackenroth, Luisa</creatorcontrib><creatorcontrib>Rump, Andreas</creatorcontrib><creatorcontrib>Schröck, Evelin</creatorcontrib><creatorcontrib>Wimberger, Pauline</creatorcontrib><creatorcontrib>Kast, Karin</creatorcontrib><title>BRCA1/2 missense mutations and the value of in-silico analyses</title><title>European journal of medical genetics</title><addtitle>Eur J Med Genet</addtitle><description>The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling.</description><subject>BRCA1 Protein - genetics</subject><subject>BRCA2 Protein - genetics</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Genetic Testing - methods</subject><subject>Humans</subject><subject>Mutation, Missense</subject><subject>Ovarian Neoplasms - diagnosis</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Predictive Value of Tests</subject><issn>1769-7212</issn><issn>1878-0849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMozjj6B1xIl25ak7TNA0QYB18wIIiuQ5reaEofY9MOzL83ZUaXru6Fe87hng-hS4ITggm7qRKoms-EYsITLBKM8yM0J4KLGItMHoedMxlzSugMnXlfYZwKQuUpmlEhMBeMzdHd_dtqSW5o1DjvofUQNeOgB9e1PtJtGQ1fEG11PULU2ci1sXe1M1046XrnwZ-jE6trDxeHuUAfjw_vq-d4_fr0slquY5PmbIitFVQbLrWQuLCiNAS4FKk2DHgmC2IzY4vwOclLZjKrNROlpimRHGNbQJou0PU-d9N33yP4QYV_DdS1bqEbvSKSShLq5ZOU7qWm77zvwapN7xrd7xTBauKmKjVxUxM3hYUK3ILp6pA_Fg2Uf5ZfUEFwuxdAaLl10CtvHLQGSteDGVTZuf_yfwBLkX3X</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Sadowski, Carolin E.</creator><creator>Kohlstedt, Daniela</creator><creator>Meisel, Cornelia</creator><creator>Keller, Katja</creator><creator>Becker, Kerstin</creator><creator>Mackenroth, Luisa</creator><creator>Rump, Andreas</creator><creator>Schröck, Evelin</creator><creator>Wimberger, Pauline</creator><creator>Kast, Karin</creator><general>Elsevier Masson SAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>BRCA1/2 missense mutations and the value of in-silico analyses</title><author>Sadowski, Carolin E. ; Kohlstedt, Daniela ; Meisel, Cornelia ; Keller, Katja ; Becker, Kerstin ; Mackenroth, Luisa ; Rump, Andreas ; Schröck, Evelin ; Wimberger, Pauline ; Kast, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ff82ac79a890bf8dc1e7983ac6e749b1f4cfb18715d6c4faa68da2319700fbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BRCA1 Protein - genetics</topic><topic>BRCA2 Protein - genetics</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Genetic Testing - methods</topic><topic>Humans</topic><topic>Mutation, Missense</topic><topic>Ovarian Neoplasms - diagnosis</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Predictive Value of Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadowski, Carolin E.</creatorcontrib><creatorcontrib>Kohlstedt, Daniela</creatorcontrib><creatorcontrib>Meisel, Cornelia</creatorcontrib><creatorcontrib>Keller, Katja</creatorcontrib><creatorcontrib>Becker, Kerstin</creatorcontrib><creatorcontrib>Mackenroth, Luisa</creatorcontrib><creatorcontrib>Rump, Andreas</creatorcontrib><creatorcontrib>Schröck, Evelin</creatorcontrib><creatorcontrib>Wimberger, Pauline</creatorcontrib><creatorcontrib>Kast, Karin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of medical genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadowski, Carolin E.</au><au>Kohlstedt, Daniela</au><au>Meisel, Cornelia</au><au>Keller, Katja</au><au>Becker, Kerstin</au><au>Mackenroth, Luisa</au><au>Rump, Andreas</au><au>Schröck, Evelin</au><au>Wimberger, Pauline</au><au>Kast, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BRCA1/2 missense mutations and the value of in-silico analyses</atitle><jtitle>European journal of medical genetics</jtitle><addtitle>Eur J Med Genet</addtitle><date>2017-11</date><risdate>2017</risdate><volume>60</volume><issue>11</issue><spage>572</spage><epage>577</epage><pages>572-577</pages><issn>1769-7212</issn><eissn>1878-0849</eissn><abstract>The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling.</abstract><cop>Netherlands</cop><pub>Elsevier Masson SAS</pub><pmid>28807866</pmid><doi>10.1016/j.ejmg.2017.08.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1769-7212
ispartof European journal of medical genetics, 2017-11, Vol.60 (11), p.572-577
issn 1769-7212
1878-0849
language eng
recordid cdi_proquest_miscellaneous_1929103853
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects BRCA1 Protein - genetics
BRCA2 Protein - genetics
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Computer Simulation
Female
Genetic Testing - methods
Humans
Mutation, Missense
Ovarian Neoplasms - diagnosis
Ovarian Neoplasms - genetics
Predictive Value of Tests
title BRCA1/2 missense mutations and the value of in-silico analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BRCA1/2%20missense%20mutations%20and%20the%20value%20of%20in-silico%20analyses&rft.jtitle=European%20journal%20of%20medical%20genetics&rft.au=Sadowski,%20Carolin%20E.&rft.date=2017-11&rft.volume=60&rft.issue=11&rft.spage=572&rft.epage=577&rft.pages=572-577&rft.issn=1769-7212&rft.eissn=1878-0849&rft_id=info:doi/10.1016/j.ejmg.2017.08.005&rft_dat=%3Cproquest_cross%3E1929103853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929103853&rft_id=info:pmid/28807866&rft_els_id=S1769721216305687&rfr_iscdi=true