Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase

Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tuberculosis (Edinburgh, Scotland) Scotland), 2017-09, Vol.106, p.82-90
Hauptverfasser: du Plessis, J., Cloete, R., Burchell, L., Sarkar, P., Warren, R.M., Christoffels, A., Wigneshweraraj, S., Sampson, S.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 82
container_title Tuberculosis (Edinburgh, Scotland)
container_volume 106
creator du Plessis, J.
Cloete, R.
Burchell, L.
Sarkar, P.
Warren, R.M.
Christoffels, A.
Wigneshweraraj, S.
Sampson, S.L.
description Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.
doi_str_mv 10.1016/j.tube.2017.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928785681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979217300380</els_id><sourcerecordid>2084462610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVJaR7tH-giCLLpxlO9LEvQTQhpUggtlBS6E7J8ndFgW44kh86_r8xMu-iicEGC853D5R6E3lOyoYTKj7tNXlrYMEKbDSlDxCt0RlXDK6boz5PyFw2rdKPZKTpPaUeKiSjyBp0ypQgTRJ-h4fbXPITopyect4DnkGHK3g449Pixwa11GaIP89Y-FTUW2U_4bmbYJmzxFF5gwH7a-tbnEFfTuHfh6Cop379el8xhP0K0Cd6i170dErw7vhfox-fbx5v76uHb3Zeb64fKcSVy1dQKXE3aXvV1r7ngnGjNrRKWa972slN1zXWjaNuDlFpyVXTXiZ6DbIFTfoE-HHLLws8LpGxGnxwMg50gLMlQzVSjaqlW9OofdBeWOJXtDCNKCMkkJYViB8rFkFKE3szRjzbuDSVm7cLszNqFWbswpAwRxXR5jF7aEbq_lj_HL8CnAwDlFi8eoknOw-Sg8xFcNl3w_8v_DRP1mfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084462610</pqid></control><display><type>article</type><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</creator><creatorcontrib>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</creatorcontrib><description>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2017.07.004</identifier><identifier>PMID: 28802409</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Antitubercular Agents - chemistry ; Antitubercular Agents - pharmacology ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriophage T7 - enzymology ; Bacteriophage T7 - genetics ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Drug discovery ; Drug Discovery - methods ; Drugs ; E coli ; Electrophoretic mobility ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; In silico analysis ; Medical treatment ; Molecular biology ; Molecular Dynamics Simulation ; Molecular modelling ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - pathogenicity ; Phages ; Principal Component Analysis ; Protein Binding ; Protein Conformation ; Protein interaction ; Protein Interaction Domains and Motifs ; Proteins ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Ribonucleic acid ; RNA ; RNA polymerase ; T7 bacteriophage ; Transcription ; Transcription, Genetic ; Tuberculosis</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2017-09, Vol.106, p.82-90</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</citedby><cites>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tube.2017.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28802409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>du Plessis, J.</creatorcontrib><creatorcontrib>Cloete, R.</creatorcontrib><creatorcontrib>Burchell, L.</creatorcontrib><creatorcontrib>Sarkar, P.</creatorcontrib><creatorcontrib>Warren, R.M.</creatorcontrib><creatorcontrib>Christoffels, A.</creatorcontrib><creatorcontrib>Wigneshweraraj, S.</creatorcontrib><creatorcontrib>Sampson, S.L.</creatorcontrib><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</description><subject>Antitubercular Agents - chemistry</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriophage T7 - enzymology</subject><subject>Bacteriophage T7 - genetics</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Drug discovery</subject><subject>Drug Discovery - methods</subject><subject>Drugs</subject><subject>E coli</subject><subject>Electrophoretic mobility</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>In silico analysis</subject><subject>Medical treatment</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Phages</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein interaction</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>T7 bacteriophage</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Tuberculosis</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtr3DAUhUVJaR7tH-giCLLpxlO9LEvQTQhpUggtlBS6E7J8ndFgW44kh86_r8xMu-iicEGC853D5R6E3lOyoYTKj7tNXlrYMEKbDSlDxCt0RlXDK6boz5PyFw2rdKPZKTpPaUeKiSjyBp0ypQgTRJ-h4fbXPITopyect4DnkGHK3g449Pixwa11GaIP89Y-FTUW2U_4bmbYJmzxFF5gwH7a-tbnEFfTuHfh6Cop379el8xhP0K0Cd6i170dErw7vhfox-fbx5v76uHb3Zeb64fKcSVy1dQKXE3aXvV1r7ngnGjNrRKWa972slN1zXWjaNuDlFpyVXTXiZ6DbIFTfoE-HHLLws8LpGxGnxwMg50gLMlQzVSjaqlW9OofdBeWOJXtDCNKCMkkJYViB8rFkFKE3szRjzbuDSVm7cLszNqFWbswpAwRxXR5jF7aEbq_lj_HL8CnAwDlFi8eoknOw-Sg8xFcNl3w_8v_DRP1mfQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>du Plessis, J.</creator><creator>Cloete, R.</creator><creator>Burchell, L.</creator><creator>Sarkar, P.</creator><creator>Warren, R.M.</creator><creator>Christoffels, A.</creator><creator>Wigneshweraraj, S.</creator><creator>Sampson, S.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><author>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antitubercular Agents - chemistry</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriophage T7 - enzymology</topic><topic>Bacteriophage T7 - genetics</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Drug discovery</topic><topic>Drug Discovery - methods</topic><topic>Drugs</topic><topic>E coli</topic><topic>Electrophoretic mobility</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>In silico analysis</topic><topic>Medical treatment</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Phages</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein interaction</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>T7 bacteriophage</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>du Plessis, J.</creatorcontrib><creatorcontrib>Cloete, R.</creatorcontrib><creatorcontrib>Burchell, L.</creatorcontrib><creatorcontrib>Sarkar, P.</creatorcontrib><creatorcontrib>Warren, R.M.</creatorcontrib><creatorcontrib>Christoffels, A.</creatorcontrib><creatorcontrib>Wigneshweraraj, S.</creatorcontrib><creatorcontrib>Sampson, S.L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>du Plessis, J.</au><au>Cloete, R.</au><au>Burchell, L.</au><au>Sarkar, P.</au><au>Warren, R.M.</au><au>Christoffels, A.</au><au>Wigneshweraraj, S.</au><au>Sampson, S.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2017-09</date><risdate>2017</risdate><volume>106</volume><spage>82</spage><epage>90</epage><pages>82-90</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>28802409</pmid><doi>10.1016/j.tube.2017.07.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1472-9792
ispartof Tuberculosis (Edinburgh, Scotland), 2017-09, Vol.106, p.82-90
issn 1472-9792
1873-281X
language eng
recordid cdi_proquest_miscellaneous_1928785681
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Antitubercular Agents - chemistry
Antitubercular Agents - pharmacology
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriophage T7 - enzymology
Bacteriophage T7 - genetics
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
Drug discovery
Drug Discovery - methods
Drugs
E coli
Electrophoretic mobility
Escherichia coli - enzymology
Escherichia coli - genetics
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Enzymologic
In silico analysis
Medical treatment
Molecular biology
Molecular Dynamics Simulation
Molecular modelling
Mycobacterium tuberculosis
Mycobacterium tuberculosis - enzymology
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - pathogenicity
Phages
Principal Component Analysis
Protein Binding
Protein Conformation
Protein interaction
Protein Interaction Domains and Motifs
Proteins
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Ribonucleic acid
RNA
RNA polymerase
T7 bacteriophage
Transcription
Transcription, Genetic
Tuberculosis
title Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20potential%20of%20T7%20bacteriophage%20protein%20Gp2%20as%20a%20novel%20inhibitor%20of%20mycobacterial%20RNA%20polymerase&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=du%20Plessis,%20J.&rft.date=2017-09&rft.volume=106&rft.spage=82&rft.epage=90&rft.pages=82-90&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2017.07.004&rft_dat=%3Cproquest_cross%3E2084462610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084462610&rft_id=info:pmid/28802409&rft_els_id=S1472979217300380&rfr_iscdi=true