Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase
Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead...
Gespeichert in:
Veröffentlicht in: | Tuberculosis (Edinburgh, Scotland) Scotland), 2017-09, Vol.106, p.82-90 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 82 |
container_title | Tuberculosis (Edinburgh, Scotland) |
container_volume | 106 |
creator | du Plessis, J. Cloete, R. Burchell, L. Sarkar, P. Warren, R.M. Christoffels, A. Wigneshweraraj, S. Sampson, S.L. |
description | Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction. |
doi_str_mv | 10.1016/j.tube.2017.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928785681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979217300380</els_id><sourcerecordid>2084462610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVJaR7tH-giCLLpxlO9LEvQTQhpUggtlBS6E7J8ndFgW44kh86_r8xMu-iicEGC853D5R6E3lOyoYTKj7tNXlrYMEKbDSlDxCt0RlXDK6boz5PyFw2rdKPZKTpPaUeKiSjyBp0ypQgTRJ-h4fbXPITopyect4DnkGHK3g449Pixwa11GaIP89Y-FTUW2U_4bmbYJmzxFF5gwH7a-tbnEFfTuHfh6Cop379el8xhP0K0Cd6i170dErw7vhfox-fbx5v76uHb3Zeb64fKcSVy1dQKXE3aXvV1r7ngnGjNrRKWa972slN1zXWjaNuDlFpyVXTXiZ6DbIFTfoE-HHLLws8LpGxGnxwMg50gLMlQzVSjaqlW9OofdBeWOJXtDCNKCMkkJYViB8rFkFKE3szRjzbuDSVm7cLszNqFWbswpAwRxXR5jF7aEbq_lj_HL8CnAwDlFi8eoknOw-Sg8xFcNl3w_8v_DRP1mfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084462610</pqid></control><display><type>article</type><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</creator><creatorcontrib>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</creatorcontrib><description>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2017.07.004</identifier><identifier>PMID: 28802409</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Antitubercular Agents - chemistry ; Antitubercular Agents - pharmacology ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriophage T7 - enzymology ; Bacteriophage T7 - genetics ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; DNA-Directed RNA Polymerases - metabolism ; Drug discovery ; Drug Discovery - methods ; Drugs ; E coli ; Electrophoretic mobility ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; In silico analysis ; Medical treatment ; Molecular biology ; Molecular Dynamics Simulation ; Molecular modelling ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - pathogenicity ; Phages ; Principal Component Analysis ; Protein Binding ; Protein Conformation ; Protein interaction ; Protein Interaction Domains and Motifs ; Proteins ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Ribonucleic acid ; RNA ; RNA polymerase ; T7 bacteriophage ; Transcription ; Transcription, Genetic ; Tuberculosis</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2017-09, Vol.106, p.82-90</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</citedby><cites>FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tube.2017.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28802409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>du Plessis, J.</creatorcontrib><creatorcontrib>Cloete, R.</creatorcontrib><creatorcontrib>Burchell, L.</creatorcontrib><creatorcontrib>Sarkar, P.</creatorcontrib><creatorcontrib>Warren, R.M.</creatorcontrib><creatorcontrib>Christoffels, A.</creatorcontrib><creatorcontrib>Wigneshweraraj, S.</creatorcontrib><creatorcontrib>Sampson, S.L.</creatorcontrib><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</description><subject>Antitubercular Agents - chemistry</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriophage T7 - enzymology</subject><subject>Bacteriophage T7 - genetics</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Drug discovery</subject><subject>Drug Discovery - methods</subject><subject>Drugs</subject><subject>E coli</subject><subject>Electrophoretic mobility</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>In silico analysis</subject><subject>Medical treatment</subject><subject>Molecular biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Phages</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein interaction</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>T7 bacteriophage</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Tuberculosis</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtr3DAUhUVJaR7tH-giCLLpxlO9LEvQTQhpUggtlBS6E7J8ndFgW44kh86_r8xMu-iicEGC853D5R6E3lOyoYTKj7tNXlrYMEKbDSlDxCt0RlXDK6boz5PyFw2rdKPZKTpPaUeKiSjyBp0ypQgTRJ-h4fbXPITopyect4DnkGHK3g449Pixwa11GaIP89Y-FTUW2U_4bmbYJmzxFF5gwH7a-tbnEFfTuHfh6Cop379el8xhP0K0Cd6i170dErw7vhfox-fbx5v76uHb3Zeb64fKcSVy1dQKXE3aXvV1r7ngnGjNrRKWa972slN1zXWjaNuDlFpyVXTXiZ6DbIFTfoE-HHLLws8LpGxGnxwMg50gLMlQzVSjaqlW9OofdBeWOJXtDCNKCMkkJYViB8rFkFKE3szRjzbuDSVm7cLszNqFWbswpAwRxXR5jF7aEbq_lj_HL8CnAwDlFi8eoknOw-Sg8xFcNl3w_8v_DRP1mfQ</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>du Plessis, J.</creator><creator>Cloete, R.</creator><creator>Burchell, L.</creator><creator>Sarkar, P.</creator><creator>Warren, R.M.</creator><creator>Christoffels, A.</creator><creator>Wigneshweraraj, S.</creator><creator>Sampson, S.L.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</title><author>du Plessis, J. ; Cloete, R. ; Burchell, L. ; Sarkar, P. ; Warren, R.M. ; Christoffels, A. ; Wigneshweraraj, S. ; Sampson, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-758ec50bf8f5f934330993a84a393bf6d85539781bfe669638099cd4f3e6be313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antitubercular Agents - chemistry</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriophage T7 - enzymology</topic><topic>Bacteriophage T7 - genetics</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Drug discovery</topic><topic>Drug Discovery - methods</topic><topic>Drugs</topic><topic>E coli</topic><topic>Electrophoretic mobility</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>In silico analysis</topic><topic>Medical treatment</topic><topic>Molecular biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Phages</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein interaction</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>T7 bacteriophage</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>du Plessis, J.</creatorcontrib><creatorcontrib>Cloete, R.</creatorcontrib><creatorcontrib>Burchell, L.</creatorcontrib><creatorcontrib>Sarkar, P.</creatorcontrib><creatorcontrib>Warren, R.M.</creatorcontrib><creatorcontrib>Christoffels, A.</creatorcontrib><creatorcontrib>Wigneshweraraj, S.</creatorcontrib><creatorcontrib>Sampson, S.L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>du Plessis, J.</au><au>Cloete, R.</au><au>Burchell, L.</au><au>Sarkar, P.</au><au>Warren, R.M.</au><au>Christoffels, A.</au><au>Wigneshweraraj, S.</au><au>Sampson, S.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2017-09</date><risdate>2017</risdate><volume>106</volume><spage>82</spage><epage>90</epage><pages>82-90</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Over the past six decades, there has been a decline in novel therapies to treat tuberculosis, while the causative agent of this disease has become increasingly resistant to current treatment regimens. Bacteriophages (phages) are able to kill bacterial cells and understanding this process could lead to novel insights for the treatment of mycobacterial infections. Phages inhibit bacterial gene transcription through phage-encoded proteins which bind to RNA polymerase (RNAP), thereby preventing bacterial transcription. Gp2, a T7 phage protein which binds to the beta prime (β′) subunit of RNAP in Escherichia coli, has been well characterized in this regard. Here, we aimed to determine whether Gp2 is able to inhibit RNAP in Mycobacterium tuberculosis as this may provide new possibilities for inhibiting the growth of this deadly pathogen. Results from an electrophoretic mobility shift assay and in vitro transcription assay revealed that Gp2 binds to mycobacterial RNAP and inhibits transcription; however to a much lesser degree than in E. coli. To further understand the molecular basis of these results, a series of in silico techniques were used to assess the interaction between mycobacterial RNAP and Gp2, providing valuable insight into the characteristics of this protein-protein interaction.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>28802409</pmid><doi>10.1016/j.tube.2017.07.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-9792 |
ispartof | Tuberculosis (Edinburgh, Scotland), 2017-09, Vol.106, p.82-90 |
issn | 1472-9792 1873-281X |
language | eng |
recordid | cdi_proquest_miscellaneous_1928785681 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Antitubercular Agents - chemistry Antitubercular Agents - pharmacology Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriophage T7 - enzymology Bacteriophage T7 - genetics DNA-directed RNA polymerase DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism Drug discovery Drug Discovery - methods Drugs E coli Electrophoretic mobility Escherichia coli - enzymology Escherichia coli - genetics Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic In silico analysis Medical treatment Molecular biology Molecular Dynamics Simulation Molecular modelling Mycobacterium tuberculosis Mycobacterium tuberculosis - enzymology Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - pathogenicity Phages Principal Component Analysis Protein Binding Protein Conformation Protein interaction Protein Interaction Domains and Motifs Proteins Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Ribonucleic acid RNA RNA polymerase T7 bacteriophage Transcription Transcription, Genetic Tuberculosis |
title | Exploring the potential of T7 bacteriophage protein Gp2 as a novel inhibitor of mycobacterial RNA polymerase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20potential%20of%20T7%20bacteriophage%20protein%20Gp2%20as%20a%20novel%20inhibitor%20of%20mycobacterial%20RNA%20polymerase&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=du%20Plessis,%20J.&rft.date=2017-09&rft.volume=106&rft.spage=82&rft.epage=90&rft.pages=82-90&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2017.07.004&rft_dat=%3Cproquest_cross%3E2084462610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084462610&rft_id=info:pmid/28802409&rft_els_id=S1472979217300380&rfr_iscdi=true |