Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment

Rationale Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2017-10, Vol.31 (20), p.1699-1708
Hauptverfasser: Leitner, Simon, Reichenauer, Thomas G., Watzinger, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1708
container_issue 20
container_start_page 1699
container_title Rapid communications in mass spectrometry
container_volume 31
creator Leitner, Simon
Reichenauer, Thomas G.
Watzinger, Andrea
description Rationale Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis‐dichloroethene (cis‐DCE) by a single laboratory microcosm study initially amending the precursor PCE only. Methods Environmental samples harboring organohalide‐respiring bacteria were incubated under anaerobic conditions and then successively and repeatedly amended with PCE and cis‐DCE in two separate laboratory microcosm studies. Reductive dechlorination was monitored by analyzing liquid samples using Purge‐and‐Trap gas chromatography isotope ratio mass spectrometry GC/MS‐C/IRMS. The prerequisites of the presented evaluation method are mass and δ‐value balancing. The evaluation method was validated by agglomerative hierarchical classification of Rayleigh plot data points. Results The sample‐sensitive range of εcis‐DCE extended from −10.6 ± 0.2‰ to −26.8 ± 0.6‰ (R2 ≥98%). The maximum standard deviations of εcis‐DCE were ±1.8‰ for single microcosms, ±1.8‰ for replicates and ±1.0‰ for the compiled replicate data of PCE and cis‐DCE amendments. A linear regression of the εcis‐DCE for replicates obtained by each amendment study showed a slope of 95% (5 of the 7 data points are within a 95% confidence interval), demonstrating factor congruency and the practicability of the evaluation method. Conclusions We found metabolite degradation and formation to be sequential but also stepwise during bacterial reductive dechlorination. The stepwise phases of the degradation of the intermediate eliminate the impact of instantaneous precursor degradation. These stepwise sections were used to determine εcis‐DCE‐values. Our results showed the validity of εcis‐DCE‐values over a wide range at initial precursor degradation (PCE). The presented evaluation method could substantially decrease lab costs for microcosm studies designed for εcis‐DCE determinations. Moreover, the results indicated that the evaluation method can be applied to other PCE‐metabolites.
doi_str_mv 10.1002/rcm.7957
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928785616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928785616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3107-fea0124d70aa7c59b32ade136a720c714c4fb0f56c2f4361b454ccbfc5846d473</originalsourceid><addsrcrecordid>eNp1kNtKxDAQhoMouh7AJ5CCN950naRJ017KegRFEL0uaTphu7TNmrTI3vkIPqNPYvagguDVDMz3fww_IccUxhSAnTvdjmUu5BYZUchlDCyh22QEuaAxp3m2R_a9nwFQKhjskj2WZSBYCiNSXWKPrq071de2i6yJtHJl2GpvezvHCDtX62mLXR8ZpXvr_Aqq_ef7RxUujXUW-yl2GCkTVNHcoR6cty5SIVUtk4dkx6jG49FmHpCX66vnyW18_3hzN7m4j3VCQcYGFVDGKwlKSS3yMmGqQpqkSjLQknLNTQlGpJoZnqS05IJrXRotMp5WXCYH5GztnTv7OqDvi7b2GptGdWgHX9CcZTITKU0DevoHndnBdeG7QCV5Bgkw-BVqZ713aIq5q1vlFgWFYtl8EZovls0H9GQjHMoWqx_wu-oAxGvgrW5w8a-oeJo8rIRfcR-Oxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939803020</pqid></control><display><type>article</type><title>Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Leitner, Simon ; Reichenauer, Thomas G. ; Watzinger, Andrea</creator><creatorcontrib>Leitner, Simon ; Reichenauer, Thomas G. ; Watzinger, Andrea</creatorcontrib><description>Rationale Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis‐dichloroethene (cis‐DCE) by a single laboratory microcosm study initially amending the precursor PCE only. Methods Environmental samples harboring organohalide‐respiring bacteria were incubated under anaerobic conditions and then successively and repeatedly amended with PCE and cis‐DCE in two separate laboratory microcosm studies. Reductive dechlorination was monitored by analyzing liquid samples using Purge‐and‐Trap gas chromatography isotope ratio mass spectrometry GC/MS‐C/IRMS. The prerequisites of the presented evaluation method are mass and δ‐value balancing. The evaluation method was validated by agglomerative hierarchical classification of Rayleigh plot data points. Results The sample‐sensitive range of εcis‐DCE extended from −10.6 ± 0.2‰ to −26.8 ± 0.6‰ (R2 ≥98%). The maximum standard deviations of εcis‐DCE were ±1.8‰ for single microcosms, ±1.8‰ for replicates and ±1.0‰ for the compiled replicate data of PCE and cis‐DCE amendments. A linear regression of the εcis‐DCE for replicates obtained by each amendment study showed a slope of 95% (5 of the 7 data points are within a 95% confidence interval), demonstrating factor congruency and the practicability of the evaluation method. Conclusions We found metabolite degradation and formation to be sequential but also stepwise during bacterial reductive dechlorination. The stepwise phases of the degradation of the intermediate eliminate the impact of instantaneous precursor degradation. These stepwise sections were used to determine εcis‐DCE‐values. Our results showed the validity of εcis‐DCE‐values over a wide range at initial precursor degradation (PCE). The presented evaluation method could substantially decrease lab costs for microcosm studies designed for εcis‐DCE determinations. Moreover, the results indicated that the evaluation method can be applied to other PCE‐metabolites.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.7957</identifier><identifier>PMID: 28805260</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anaerobic conditions ; Bacteria ; Carbon isotopes ; Chlorination ; Confidence intervals ; Contaminants ; Data points ; Dechlorination ; Degradation ; Environmental monitoring ; Gas chromatography ; Groundwater ; Isotopes ; Laboratories ; Mass spectrometry ; Metabolites ; Precursors ; Regression analysis ; Studies</subject><ispartof>Rapid communications in mass spectrometry, 2017-10, Vol.31 (20), p.1699-1708</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3107-fea0124d70aa7c59b32ade136a720c714c4fb0f56c2f4361b454ccbfc5846d473</cites><orcidid>0000-0002-4156-5425 ; 0000-0002-0889-1720 ; 0000-0002-9082-1544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.7957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.7957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28805260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leitner, Simon</creatorcontrib><creatorcontrib>Reichenauer, Thomas G.</creatorcontrib><creatorcontrib>Watzinger, Andrea</creatorcontrib><title>Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Rationale Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis‐dichloroethene (cis‐DCE) by a single laboratory microcosm study initially amending the precursor PCE only. Methods Environmental samples harboring organohalide‐respiring bacteria were incubated under anaerobic conditions and then successively and repeatedly amended with PCE and cis‐DCE in two separate laboratory microcosm studies. Reductive dechlorination was monitored by analyzing liquid samples using Purge‐and‐Trap gas chromatography isotope ratio mass spectrometry GC/MS‐C/IRMS. The prerequisites of the presented evaluation method are mass and δ‐value balancing. The evaluation method was validated by agglomerative hierarchical classification of Rayleigh plot data points. Results The sample‐sensitive range of εcis‐DCE extended from −10.6 ± 0.2‰ to −26.8 ± 0.6‰ (R2 ≥98%). The maximum standard deviations of εcis‐DCE were ±1.8‰ for single microcosms, ±1.8‰ for replicates and ±1.0‰ for the compiled replicate data of PCE and cis‐DCE amendments. A linear regression of the εcis‐DCE for replicates obtained by each amendment study showed a slope of 95% (5 of the 7 data points are within a 95% confidence interval), demonstrating factor congruency and the practicability of the evaluation method. Conclusions We found metabolite degradation and formation to be sequential but also stepwise during bacterial reductive dechlorination. The stepwise phases of the degradation of the intermediate eliminate the impact of instantaneous precursor degradation. These stepwise sections were used to determine εcis‐DCE‐values. Our results showed the validity of εcis‐DCE‐values over a wide range at initial precursor degradation (PCE). The presented evaluation method could substantially decrease lab costs for microcosm studies designed for εcis‐DCE determinations. Moreover, the results indicated that the evaluation method can be applied to other PCE‐metabolites.</description><subject>Anaerobic conditions</subject><subject>Bacteria</subject><subject>Carbon isotopes</subject><subject>Chlorination</subject><subject>Confidence intervals</subject><subject>Contaminants</subject><subject>Data points</subject><subject>Dechlorination</subject><subject>Degradation</subject><subject>Environmental monitoring</subject><subject>Gas chromatography</subject><subject>Groundwater</subject><subject>Isotopes</subject><subject>Laboratories</subject><subject>Mass spectrometry</subject><subject>Metabolites</subject><subject>Precursors</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKxDAQhoMouh7AJ5CCN950naRJ017KegRFEL0uaTphu7TNmrTI3vkIPqNPYvagguDVDMz3fww_IccUxhSAnTvdjmUu5BYZUchlDCyh22QEuaAxp3m2R_a9nwFQKhjskj2WZSBYCiNSXWKPrq071de2i6yJtHJl2GpvezvHCDtX62mLXR8ZpXvr_Aqq_ef7RxUujXUW-yl2GCkTVNHcoR6cty5SIVUtk4dkx6jG49FmHpCX66vnyW18_3hzN7m4j3VCQcYGFVDGKwlKSS3yMmGqQpqkSjLQknLNTQlGpJoZnqS05IJrXRotMp5WXCYH5GztnTv7OqDvi7b2GptGdWgHX9CcZTITKU0DevoHndnBdeG7QCV5Bgkw-BVqZ713aIq5q1vlFgWFYtl8EZovls0H9GQjHMoWqx_wu-oAxGvgrW5w8a-oeJo8rIRfcR-Oxg</recordid><startdate>20171030</startdate><enddate>20171030</enddate><creator>Leitner, Simon</creator><creator>Reichenauer, Thomas G.</creator><creator>Watzinger, Andrea</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4156-5425</orcidid><orcidid>https://orcid.org/0000-0002-0889-1720</orcidid><orcidid>https://orcid.org/0000-0002-9082-1544</orcidid></search><sort><creationdate>20171030</creationdate><title>Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment</title><author>Leitner, Simon ; Reichenauer, Thomas G. ; Watzinger, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3107-fea0124d70aa7c59b32ade136a720c714c4fb0f56c2f4361b454ccbfc5846d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anaerobic conditions</topic><topic>Bacteria</topic><topic>Carbon isotopes</topic><topic>Chlorination</topic><topic>Confidence intervals</topic><topic>Contaminants</topic><topic>Data points</topic><topic>Dechlorination</topic><topic>Degradation</topic><topic>Environmental monitoring</topic><topic>Gas chromatography</topic><topic>Groundwater</topic><topic>Isotopes</topic><topic>Laboratories</topic><topic>Mass spectrometry</topic><topic>Metabolites</topic><topic>Precursors</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitner, Simon</creatorcontrib><creatorcontrib>Reichenauer, Thomas G.</creatorcontrib><creatorcontrib>Watzinger, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitner, Simon</au><au>Reichenauer, Thomas G.</au><au>Watzinger, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2017-10-30</date><risdate>2017</risdate><volume>31</volume><issue>20</issue><spage>1699</spage><epage>1708</epage><pages>1699-1708</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale Bacterial reductive dechlorination of the groundwater contaminant tetrachloroethene (PCE) involves the formation of lower chlorinated metabolites. Metabolites can be instantaneously formed and consumed in this sequential process; quantification and validation of their isotopic effects conventionally rely on separate laboratory microcosm studies. Here, we present an evaluation method enabling the determination of the carbon isotope enrichment factor (ε) for the intermediate cis‐dichloroethene (cis‐DCE) by a single laboratory microcosm study initially amending the precursor PCE only. Methods Environmental samples harboring organohalide‐respiring bacteria were incubated under anaerobic conditions and then successively and repeatedly amended with PCE and cis‐DCE in two separate laboratory microcosm studies. Reductive dechlorination was monitored by analyzing liquid samples using Purge‐and‐Trap gas chromatography isotope ratio mass spectrometry GC/MS‐C/IRMS. The prerequisites of the presented evaluation method are mass and δ‐value balancing. The evaluation method was validated by agglomerative hierarchical classification of Rayleigh plot data points. Results The sample‐sensitive range of εcis‐DCE extended from −10.6 ± 0.2‰ to −26.8 ± 0.6‰ (R2 ≥98%). The maximum standard deviations of εcis‐DCE were ±1.8‰ for single microcosms, ±1.8‰ for replicates and ±1.0‰ for the compiled replicate data of PCE and cis‐DCE amendments. A linear regression of the εcis‐DCE for replicates obtained by each amendment study showed a slope of 95% (5 of the 7 data points are within a 95% confidence interval), demonstrating factor congruency and the practicability of the evaluation method. Conclusions We found metabolite degradation and formation to be sequential but also stepwise during bacterial reductive dechlorination. The stepwise phases of the degradation of the intermediate eliminate the impact of instantaneous precursor degradation. These stepwise sections were used to determine εcis‐DCE‐values. Our results showed the validity of εcis‐DCE‐values over a wide range at initial precursor degradation (PCE). The presented evaluation method could substantially decrease lab costs for microcosm studies designed for εcis‐DCE determinations. Moreover, the results indicated that the evaluation method can be applied to other PCE‐metabolites.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28805260</pmid><doi>10.1002/rcm.7957</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4156-5425</orcidid><orcidid>https://orcid.org/0000-0002-0889-1720</orcidid><orcidid>https://orcid.org/0000-0002-9082-1544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2017-10, Vol.31 (20), p.1699-1708
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_1928785616
source Wiley Online Library Journals Frontfile Complete
subjects Anaerobic conditions
Bacteria
Carbon isotopes
Chlorination
Confidence intervals
Contaminants
Data points
Dechlorination
Degradation
Environmental monitoring
Gas chromatography
Groundwater
Isotopes
Laboratories
Mass spectrometry
Metabolites
Precursors
Regression analysis
Studies
title Determination of carbon isotope enrichment factors of cis‐dichloroethene after precursor amendment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20carbon%20isotope%20enrichment%20factors%20of%20cis%E2%80%90dichloroethene%20after%20precursor%20amendment&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Leitner,%20Simon&rft.date=2017-10-30&rft.volume=31&rft.issue=20&rft.spage=1699&rft.epage=1708&rft.pages=1699-1708&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.7957&rft_dat=%3Cproquest_cross%3E1928785616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939803020&rft_id=info:pmid/28805260&rfr_iscdi=true