In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices

Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation–delithiation processes. In this study, we successfully and directly observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-09, Vol.89 (18), p.9671-9675
Hauptverfasser: Tsai, Tsung-Chun, Huang, Guan-Min, Huang, Chun-Wei, Chen, Jui-Yuan, Yang, Chih-Chieh, Tseng, Tseung-Yuen, Wu, Wen-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9675
container_issue 18
container_start_page 9671
container_title Analytical chemistry (Washington)
container_volume 89
creator Tsai, Tsung-Chun
Huang, Guan-Min
Huang, Chun-Wei
Chen, Jui-Yuan
Yang, Chih-Chieh
Tseng, Tseung-Yuen
Wu, Wen-Wei
description Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation–delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.
doi_str_mv 10.1021/acs.analchem.7b00958
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928785432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928785432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-da3f052daf56e20eb6128d92902bab5bda0d2b7dbd6d73de6665849f66e9ad383</originalsourceid><addsrcrecordid>eNpd0MFKw0AQgOFFFKzVN_Cw4MVL2tlNstkcbY1aqPbQeg6b7KTdkmY1mxS8-Qq-ok9iQiuIp4HhY2B-Qq4ZjBhwNla5G6lKlfkGd6MoA4hDeUIGLOTgCSn5KRkAgO_xCOCcXDi3BWAMmBgQnFV0aZqWrpJnOqv26BqzVo2xFbUFbTZIkxLzprb9bZOrkk5wo_bG1tRUdPqycuPnasG_P78myqGmSYX1-oMuG1urNdJ73Jsc3SU5K1Tp8Oo4h-T1IVlNn7z54nE2vZt7isdB42nlFxByrYpQIAfMBONSxzwGnqkszLQCzbNIZ1royNcohAhlEBdCYKy0L_0huT3cfavte9v9ku6My7EsVYW2dSmLuYxkGPi8ozf_6Na2dRexVyFjfgAs6hQcVJf4D4C07572y9_u6bG7_wMbkHmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951134017</pqid></control><display><type>article</type><title>In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices</title><source>ACS Publications</source><creator>Tsai, Tsung-Chun ; Huang, Guan-Min ; Huang, Chun-Wei ; Chen, Jui-Yuan ; Yang, Chih-Chieh ; Tseng, Tseung-Yuen ; Wu, Wen-Wei</creator><creatorcontrib>Tsai, Tsung-Chun ; Huang, Guan-Min ; Huang, Chun-Wei ; Chen, Jui-Yuan ; Yang, Chih-Chieh ; Tseng, Tseung-Yuen ; Wu, Wen-Wei</creatorcontrib><description>Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation–delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b00958</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Capacitance ; Chemistry ; Electrochemical analysis ; Electrochemistry ; Electron microscopy ; Energy storage ; Lithium batteries ; Lithium-ion batteries ; Manganese oxides ; Metal oxides ; Oxides ; Supercapacitors ; Transition metal oxides ; Transmission electron microscopy</subject><ispartof>Analytical chemistry (Washington), 2017-09, Vol.89 (18), p.9671-9675</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 19, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8388-8417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b00958$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b00958$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Tsai, Tsung-Chun</creatorcontrib><creatorcontrib>Huang, Guan-Min</creatorcontrib><creatorcontrib>Huang, Chun-Wei</creatorcontrib><creatorcontrib>Chen, Jui-Yuan</creatorcontrib><creatorcontrib>Yang, Chih-Chieh</creatorcontrib><creatorcontrib>Tseng, Tseung-Yuen</creatorcontrib><creatorcontrib>Wu, Wen-Wei</creatorcontrib><title>In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation–delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.</description><subject>Analytical chemistry</subject><subject>Capacitance</subject><subject>Chemistry</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>Energy storage</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Manganese oxides</subject><subject>Metal oxides</subject><subject>Oxides</subject><subject>Supercapacitors</subject><subject>Transition metal oxides</subject><subject>Transmission electron microscopy</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpd0MFKw0AQgOFFFKzVN_Cw4MVL2tlNstkcbY1aqPbQeg6b7KTdkmY1mxS8-Qq-ok9iQiuIp4HhY2B-Qq4ZjBhwNla5G6lKlfkGd6MoA4hDeUIGLOTgCSn5KRkAgO_xCOCcXDi3BWAMmBgQnFV0aZqWrpJnOqv26BqzVo2xFbUFbTZIkxLzprb9bZOrkk5wo_bG1tRUdPqycuPnasG_P78myqGmSYX1-oMuG1urNdJ73Jsc3SU5K1Tp8Oo4h-T1IVlNn7z54nE2vZt7isdB42nlFxByrYpQIAfMBONSxzwGnqkszLQCzbNIZ1royNcohAhlEBdCYKy0L_0huT3cfavte9v9ku6My7EsVYW2dSmLuYxkGPi8ozf_6Na2dRexVyFjfgAs6hQcVJf4D4C07572y9_u6bG7_wMbkHmk</recordid><startdate>20170919</startdate><enddate>20170919</enddate><creator>Tsai, Tsung-Chun</creator><creator>Huang, Guan-Min</creator><creator>Huang, Chun-Wei</creator><creator>Chen, Jui-Yuan</creator><creator>Yang, Chih-Chieh</creator><creator>Tseng, Tseung-Yuen</creator><creator>Wu, Wen-Wei</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8388-8417</orcidid></search><sort><creationdate>20170919</creationdate><title>In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices</title><author>Tsai, Tsung-Chun ; Huang, Guan-Min ; Huang, Chun-Wei ; Chen, Jui-Yuan ; Yang, Chih-Chieh ; Tseng, Tseung-Yuen ; Wu, Wen-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-da3f052daf56e20eb6128d92902bab5bda0d2b7dbd6d73de6665849f66e9ad383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Capacitance</topic><topic>Chemistry</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>Energy storage</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Manganese oxides</topic><topic>Metal oxides</topic><topic>Oxides</topic><topic>Supercapacitors</topic><topic>Transition metal oxides</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Tsung-Chun</creatorcontrib><creatorcontrib>Huang, Guan-Min</creatorcontrib><creatorcontrib>Huang, Chun-Wei</creatorcontrib><creatorcontrib>Chen, Jui-Yuan</creatorcontrib><creatorcontrib>Yang, Chih-Chieh</creatorcontrib><creatorcontrib>Tseng, Tseung-Yuen</creatorcontrib><creatorcontrib>Wu, Wen-Wei</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Tsung-Chun</au><au>Huang, Guan-Min</au><au>Huang, Chun-Wei</au><au>Chen, Jui-Yuan</au><au>Yang, Chih-Chieh</au><au>Tseng, Tseung-Yuen</au><au>Wu, Wen-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-09-19</date><risdate>2017</risdate><volume>89</volume><issue>18</issue><spage>9671</spage><epage>9675</epage><pages>9671-9675</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation–delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.7b00958</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8388-8417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-09, Vol.89 (18), p.9671-9675
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1928785432
source ACS Publications
subjects Analytical chemistry
Capacitance
Chemistry
Electrochemical analysis
Electrochemistry
Electron microscopy
Energy storage
Lithium batteries
Lithium-ion batteries
Manganese oxides
Metal oxides
Oxides
Supercapacitors
Transition metal oxides
Transmission electron microscopy
title In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2‑Based Energy Storage Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20TEM%20Investigation%20of%20the%20Electrochemical%20Behavior%20in%20CNTs/MnO2%E2%80%91Based%20Energy%20Storage%20Devices&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Tsai,%20Tsung-Chun&rft.date=2017-09-19&rft.volume=89&rft.issue=18&rft.spage=9671&rft.epage=9675&rft.pages=9671-9675&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b00958&rft_dat=%3Cproquest_acs_j%3E1928785432%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951134017&rft_id=info:pmid/&rfr_iscdi=true