Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction

Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of clinical and laboratory science 2017-08, Vol.47 (4), p.452-456
Hauptverfasser: Donaldson, Keri, Demers, Laurence, Taylor, Kirk, Lopez, Joe, Chang, Sherman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 4
container_start_page 452
container_title Annals of clinical and laboratory science
container_volume 47
creator Donaldson, Keri
Demers, Laurence
Taylor, Kirk
Lopez, Joe
Chang, Sherman
description Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928515619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928515619</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-7698bf055bb8e584f16278fb8b985754e9755f9bffd3a60e588fe632bbd86fcf3</originalsourceid><addsrcrecordid>eNo9j1FLwzAUhYMgbk7_guTRl0KSNunNm2PoHEwmos8laXIh2ja1SQX_vQOnTwcOHx_nnJEll5IVwIAtyGVK74wJXVXsgiwEAONlLZbk7mnucii-zBTMkOnWDz6Hlj6bwXcU4_TfvIT0QSPSwxhicHTtXGhziMMVOUfTJX99yhV5e7h_3TwW-8N2t1nvi1FwnotaabDIpLQWvIQKuRI1oAWrQday8rqWErVFdKVR7IgAelUKax0obLFckdtf7zjFz9mn3PQhtb7rjkvjnBquBUguFddH9OaEzrb3rhmn0Jvpu_l7Xf4AnMRRjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928515619</pqid></control><display><type>article</type><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</creator><creatorcontrib>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</creatorcontrib><description>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</description><identifier>EISSN: 1550-8080</identifier><identifier>PMID: 28801372</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Case-Control Studies ; Cohort Studies ; Female ; Follow-Up Studies ; Genetic Markers ; Genetic Predisposition to Disease ; Genotype ; Heroin Dependence - diagnosis ; Heroin Dependence - genetics ; Humans ; Male ; Opioid-Related Disorders - diagnosis ; Opioid-Related Disorders - genetics ; Polymorphism, Single Nucleotide ; Prognosis ; Risk Factors</subject><ispartof>Annals of clinical and laboratory science, 2017-08, Vol.47 (4), p.452-456</ispartof><rights>2017 by the Association of Clinical Scientists, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28801372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donaldson, Keri</creatorcontrib><creatorcontrib>Demers, Laurence</creatorcontrib><creatorcontrib>Taylor, Kirk</creatorcontrib><creatorcontrib>Lopez, Joe</creatorcontrib><creatorcontrib>Chang, Sherman</creatorcontrib><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><title>Annals of clinical and laboratory science</title><addtitle>Ann Clin Lab Sci</addtitle><description>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</description><subject>Adult</subject><subject>Case-Control Studies</subject><subject>Cohort Studies</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genetic Markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Heroin Dependence - diagnosis</subject><subject>Heroin Dependence - genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Opioid-Related Disorders - diagnosis</subject><subject>Opioid-Related Disorders - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Prognosis</subject><subject>Risk Factors</subject><issn>1550-8080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9j1FLwzAUhYMgbk7_guTRl0KSNunNm2PoHEwmos8laXIh2ja1SQX_vQOnTwcOHx_nnJEll5IVwIAtyGVK74wJXVXsgiwEAONlLZbk7mnucii-zBTMkOnWDz6Hlj6bwXcU4_TfvIT0QSPSwxhicHTtXGhziMMVOUfTJX99yhV5e7h_3TwW-8N2t1nvi1FwnotaabDIpLQWvIQKuRI1oAWrQday8rqWErVFdKVR7IgAelUKax0obLFckdtf7zjFz9mn3PQhtb7rjkvjnBquBUguFddH9OaEzrb3rhmn0Jvpu_l7Xf4AnMRRjA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Donaldson, Keri</creator><creator>Demers, Laurence</creator><creator>Taylor, Kirk</creator><creator>Lopez, Joe</creator><creator>Chang, Sherman</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><author>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-7698bf055bb8e584f16278fb8b985754e9755f9bffd3a60e588fe632bbd86fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Case-Control Studies</topic><topic>Cohort Studies</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genetic Markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Heroin Dependence - diagnosis</topic><topic>Heroin Dependence - genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Opioid-Related Disorders - diagnosis</topic><topic>Opioid-Related Disorders - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Prognosis</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donaldson, Keri</creatorcontrib><creatorcontrib>Demers, Laurence</creatorcontrib><creatorcontrib>Taylor, Kirk</creatorcontrib><creatorcontrib>Lopez, Joe</creatorcontrib><creatorcontrib>Chang, Sherman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of clinical and laboratory science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donaldson, Keri</au><au>Demers, Laurence</au><au>Taylor, Kirk</au><au>Lopez, Joe</au><au>Chang, Sherman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</atitle><jtitle>Annals of clinical and laboratory science</jtitle><addtitle>Ann Clin Lab Sci</addtitle><date>2017-08</date><risdate>2017</risdate><volume>47</volume><issue>4</issue><spage>452</spage><epage>456</epage><pages>452-456</pages><eissn>1550-8080</eissn><abstract>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</abstract><cop>United States</cop><pmid>28801372</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1550-8080
ispartof Annals of clinical and laboratory science, 2017-08, Vol.47 (4), p.452-456
issn 1550-8080
language eng
recordid cdi_proquest_miscellaneous_1928515619
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Adult
Case-Control Studies
Cohort Studies
Female
Follow-Up Studies
Genetic Markers
Genetic Predisposition to Disease
Genotype
Heroin Dependence - diagnosis
Heroin Dependence - genetics
Humans
Male
Opioid-Related Disorders - diagnosis
Opioid-Related Disorders - genetics
Polymorphism, Single Nucleotide
Prognosis
Risk Factors
title Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-variant%20Genetic%20Panel%20for%20Genetic%20Risk%20of%20Opioid%20Addiction&rft.jtitle=Annals%20of%20clinical%20and%20laboratory%20science&rft.au=Donaldson,%20Keri&rft.date=2017-08&rft.volume=47&rft.issue=4&rft.spage=452&rft.epage=456&rft.pages=452-456&rft.eissn=1550-8080&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1928515619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928515619&rft_id=info:pmid/28801372&rfr_iscdi=true