Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction
Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addict...
Gespeichert in:
Veröffentlicht in: | Annals of clinical and laboratory science 2017-08, Vol.47 (4), p.452-456 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 4 |
container_start_page | 452 |
container_title | Annals of clinical and laboratory science |
container_volume | 47 |
creator | Donaldson, Keri Demers, Laurence Taylor, Kirk Lopez, Joe Chang, Sherman |
description | Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928515619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928515619</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-7698bf055bb8e584f16278fb8b985754e9755f9bffd3a60e588fe632bbd86fcf3</originalsourceid><addsrcrecordid>eNo9j1FLwzAUhYMgbk7_guTRl0KSNunNm2PoHEwmos8laXIh2ja1SQX_vQOnTwcOHx_nnJEll5IVwIAtyGVK74wJXVXsgiwEAONlLZbk7mnucii-zBTMkOnWDz6Hlj6bwXcU4_TfvIT0QSPSwxhicHTtXGhziMMVOUfTJX99yhV5e7h_3TwW-8N2t1nvi1FwnotaabDIpLQWvIQKuRI1oAWrQday8rqWErVFdKVR7IgAelUKax0obLFckdtf7zjFz9mn3PQhtb7rjkvjnBquBUguFddH9OaEzrb3rhmn0Jvpu_l7Xf4AnMRRjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928515619</pqid></control><display><type>article</type><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</creator><creatorcontrib>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</creatorcontrib><description>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</description><identifier>EISSN: 1550-8080</identifier><identifier>PMID: 28801372</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Case-Control Studies ; Cohort Studies ; Female ; Follow-Up Studies ; Genetic Markers ; Genetic Predisposition to Disease ; Genotype ; Heroin Dependence - diagnosis ; Heroin Dependence - genetics ; Humans ; Male ; Opioid-Related Disorders - diagnosis ; Opioid-Related Disorders - genetics ; Polymorphism, Single Nucleotide ; Prognosis ; Risk Factors</subject><ispartof>Annals of clinical and laboratory science, 2017-08, Vol.47 (4), p.452-456</ispartof><rights>2017 by the Association of Clinical Scientists, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28801372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donaldson, Keri</creatorcontrib><creatorcontrib>Demers, Laurence</creatorcontrib><creatorcontrib>Taylor, Kirk</creatorcontrib><creatorcontrib>Lopez, Joe</creatorcontrib><creatorcontrib>Chang, Sherman</creatorcontrib><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><title>Annals of clinical and laboratory science</title><addtitle>Ann Clin Lab Sci</addtitle><description>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</description><subject>Adult</subject><subject>Case-Control Studies</subject><subject>Cohort Studies</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Genetic Markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Heroin Dependence - diagnosis</subject><subject>Heroin Dependence - genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Opioid-Related Disorders - diagnosis</subject><subject>Opioid-Related Disorders - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Prognosis</subject><subject>Risk Factors</subject><issn>1550-8080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9j1FLwzAUhYMgbk7_guTRl0KSNunNm2PoHEwmos8laXIh2ja1SQX_vQOnTwcOHx_nnJEll5IVwIAtyGVK74wJXVXsgiwEAONlLZbk7mnucii-zBTMkOnWDz6Hlj6bwXcU4_TfvIT0QSPSwxhicHTtXGhziMMVOUfTJX99yhV5e7h_3TwW-8N2t1nvi1FwnotaabDIpLQWvIQKuRI1oAWrQday8rqWErVFdKVR7IgAelUKax0obLFckdtf7zjFz9mn3PQhtb7rjkvjnBquBUguFddH9OaEzrb3rhmn0Jvpu_l7Xf4AnMRRjA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Donaldson, Keri</creator><creator>Demers, Laurence</creator><creator>Taylor, Kirk</creator><creator>Lopez, Joe</creator><creator>Chang, Sherman</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</title><author>Donaldson, Keri ; Demers, Laurence ; Taylor, Kirk ; Lopez, Joe ; Chang, Sherman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-7698bf055bb8e584f16278fb8b985754e9755f9bffd3a60e588fe632bbd86fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Case-Control Studies</topic><topic>Cohort Studies</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Genetic Markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Heroin Dependence - diagnosis</topic><topic>Heroin Dependence - genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Opioid-Related Disorders - diagnosis</topic><topic>Opioid-Related Disorders - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Prognosis</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donaldson, Keri</creatorcontrib><creatorcontrib>Demers, Laurence</creatorcontrib><creatorcontrib>Taylor, Kirk</creatorcontrib><creatorcontrib>Lopez, Joe</creatorcontrib><creatorcontrib>Chang, Sherman</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of clinical and laboratory science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donaldson, Keri</au><au>Demers, Laurence</au><au>Taylor, Kirk</au><au>Lopez, Joe</au><au>Chang, Sherman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction</atitle><jtitle>Annals of clinical and laboratory science</jtitle><addtitle>Ann Clin Lab Sci</addtitle><date>2017-08</date><risdate>2017</risdate><volume>47</volume><issue>4</issue><spage>452</spage><epage>456</epage><pages>452-456</pages><eissn>1550-8080</eissn><abstract>Over 116 million people worldwide have chronic pain and prescription dependence. In the US, opioids account for the majority of overdose deaths, and in 2014, almost 2 million Americans abused or were dependent on prescription opioids. Genetic factors may play a key role in opioid prescription addiction. Herein, we describe genetic variations between opioid addicted and non-addicted populations and derive a predictive model determining risk of opioid addiction. This case cohort study compares the frequency of 16 single nucleotide polymorphisms involved in the brain reward pathways in patients with and without opioid addiction. Data from 37 patients with prescription opioid or heroin addiction and 30 age and gender matched controls were used to design the predictive score. The predictive score was then tested on an additional 138 samples to determine generalizabilty. Results for Method Derivation of Observed data: ROC statistic=0.92, sensitivity=82% (95% CI: 66-90), specificity=75% (95% CI:56-87). TreeNet "learn" data: ROC statistic=0.92, sensitivity=92%, specificity=90%, precision=92%, and overall correct=91%. Results of Generalizability data: Sensitivity=97% (95% CI: 90 to 100), specificity=87% (95% CI: 86 to 93), positive likelihood ratio=7.3 (95% CI: 4.0 to 13.5), and negative likelihood ratio=0.03 (95% CI: 0.01 to 0.13). This negative likelihood ratio can be used as an evidence based measure to exclude patients with a high risk of opioid addicition or substance use disorder. By identifying patients with a lower risk for opioid addiction, our model may inform therapeutic decisions.</abstract><cop>United States</cop><pmid>28801372</pmid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1550-8080 |
ispartof | Annals of clinical and laboratory science, 2017-08, Vol.47 (4), p.452-456 |
issn | 1550-8080 |
language | eng |
recordid | cdi_proquest_miscellaneous_1928515619 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete |
subjects | Adult Case-Control Studies Cohort Studies Female Follow-Up Studies Genetic Markers Genetic Predisposition to Disease Genotype Heroin Dependence - diagnosis Heroin Dependence - genetics Humans Male Opioid-Related Disorders - diagnosis Opioid-Related Disorders - genetics Polymorphism, Single Nucleotide Prognosis Risk Factors |
title | Multi-variant Genetic Panel for Genetic Risk of Opioid Addiction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-variant%20Genetic%20Panel%20for%20Genetic%20Risk%20of%20Opioid%20Addiction&rft.jtitle=Annals%20of%20clinical%20and%20laboratory%20science&rft.au=Donaldson,%20Keri&rft.date=2017-08&rft.volume=47&rft.issue=4&rft.spage=452&rft.epage=456&rft.pages=452-456&rft.eissn=1550-8080&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1928515619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928515619&rft_id=info:pmid/28801372&rfr_iscdi=true |