Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid
Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main ferment...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2017-12, Vol.114 (12), p.2807-2817 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2817 |
---|---|
container_issue | 12 |
container_start_page | 2807 |
container_title | Biotechnology and bioengineering |
container_volume | 114 |
creator | Gandini, Chiara Tarraran, Loredana Kalemasi, Denis Pessione, Enrica Mazzoli, Roberto |
description | Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.
In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA. |
doi_str_mv | 10.1002/bit.26400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928514538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954634686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOl4WvoAE3OiizkmapslSB28wIMi4lNKmCUTaRpNWnZ2P4DP6JGasuhBcnXPgOx8_P0L7BE4IAJ1Wtj-hnAGsoQkBmSdAJayjCQDwJM0k3ULbITzEMxecb6ItKgRQgHSC7m-1cm1lu7Lr8bxUvVNOqSHgJu42YOM81sZYZXUElOuetQ_WddgZrHTTuFq_9t52Aduud3j-8fb-9alwqWy9izZM2QS99z130N3F-WJ2lcxvLq9np_NEpRIgIcCINpoZKrmWKeGCgWFaCJmLmLLOyqoiMqtqUBSMYbTMM15LIassZdTwdAcdjd5H754GHfqitWEVr-y0G0JBJBUZYVkqInr4B31wg-9iukhljKeMi5XweKSUdyF4bYpHb9vSLwsCxarzInZefHUe2YNv41C1uv4lf0qOwHQEXmyjl_-birPrxaj8BMgQivM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954634686</pqid></control><display><type>article</type><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</creator><creatorcontrib>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</creatorcontrib><description>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.
In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26400</identifier><identifier>PMID: 28802003</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; beta‐glycosidase ; Biodegradability ; Biodegradable materials ; Biodegradation ; Biological control ; Bioprocessing ; Biorefineries ; Cellooligosaccharides ; cellulase ; Cellulose ; Cellulose - analogs & derivatives ; Cellulose - genetics ; Cellulose - metabolism ; Consolidation ; Dextrins - genetics ; Dextrins - metabolism ; Endoglucanase ; Fermentation ; Genetic Enhancement - methods ; Glucosidase ; Lactic acid ; Lactic Acid - biosynthesis ; Lactic Acid - isolation & purification ; Lactic acid bacteria ; Lactococcus lactis ; Lactococcus lactis - genetics ; Lactococcus lactis - metabolism ; Metabolic engineering ; Nutritional requirements ; Polylactic acid ; polylactide ; Polymers ; Polysaccharides ; recombinant cellulolytic strategy ; Recombinant Proteins - metabolism ; Recombination, Genetic - genetics ; Saccharides ; Starters ; Substrates</subject><ispartof>Biotechnology and bioengineering, 2017-12, Vol.114 (12), p.2807-2817</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</citedby><cites>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</cites><orcidid>0000-0001-7674-8187 ; 0000-0002-8245-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26400$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26400$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28802003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gandini, Chiara</creatorcontrib><creatorcontrib>Tarraran, Loredana</creatorcontrib><creatorcontrib>Kalemasi, Denis</creatorcontrib><creatorcontrib>Pessione, Enrica</creatorcontrib><creatorcontrib>Mazzoli, Roberto</creatorcontrib><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.
In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</description><subject>Bacteria</subject><subject>beta‐glycosidase</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biological control</subject><subject>Bioprocessing</subject><subject>Biorefineries</subject><subject>Cellooligosaccharides</subject><subject>cellulase</subject><subject>Cellulose</subject><subject>Cellulose - analogs & derivatives</subject><subject>Cellulose - genetics</subject><subject>Cellulose - metabolism</subject><subject>Consolidation</subject><subject>Dextrins - genetics</subject><subject>Dextrins - metabolism</subject><subject>Endoglucanase</subject><subject>Fermentation</subject><subject>Genetic Enhancement - methods</subject><subject>Glucosidase</subject><subject>Lactic acid</subject><subject>Lactic Acid - biosynthesis</subject><subject>Lactic Acid - isolation & purification</subject><subject>Lactic acid bacteria</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - metabolism</subject><subject>Metabolic engineering</subject><subject>Nutritional requirements</subject><subject>Polylactic acid</subject><subject>polylactide</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>recombinant cellulolytic strategy</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharides</subject><subject>Starters</subject><subject>Substrates</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUhoMoOl4WvoAE3OiizkmapslSB28wIMi4lNKmCUTaRpNWnZ2P4DP6JGasuhBcnXPgOx8_P0L7BE4IAJ1Wtj-hnAGsoQkBmSdAJayjCQDwJM0k3ULbITzEMxecb6ItKgRQgHSC7m-1cm1lu7Lr8bxUvVNOqSHgJu42YOM81sZYZXUElOuetQ_WddgZrHTTuFq_9t52Aduud3j-8fb-9alwqWy9izZM2QS99z130N3F-WJ2lcxvLq9np_NEpRIgIcCINpoZKrmWKeGCgWFaCJmLmLLOyqoiMqtqUBSMYbTMM15LIassZdTwdAcdjd5H754GHfqitWEVr-y0G0JBJBUZYVkqInr4B31wg-9iukhljKeMi5XweKSUdyF4bYpHb9vSLwsCxarzInZefHUe2YNv41C1uv4lf0qOwHQEXmyjl_-birPrxaj8BMgQivM</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Gandini, Chiara</creator><creator>Tarraran, Loredana</creator><creator>Kalemasi, Denis</creator><creator>Pessione, Enrica</creator><creator>Mazzoli, Roberto</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7674-8187</orcidid><orcidid>https://orcid.org/0000-0002-8245-1766</orcidid></search><sort><creationdate>201712</creationdate><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><author>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>beta‐glycosidase</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biological control</topic><topic>Bioprocessing</topic><topic>Biorefineries</topic><topic>Cellooligosaccharides</topic><topic>cellulase</topic><topic>Cellulose</topic><topic>Cellulose - analogs & derivatives</topic><topic>Cellulose - genetics</topic><topic>Cellulose - metabolism</topic><topic>Consolidation</topic><topic>Dextrins - genetics</topic><topic>Dextrins - metabolism</topic><topic>Endoglucanase</topic><topic>Fermentation</topic><topic>Genetic Enhancement - methods</topic><topic>Glucosidase</topic><topic>Lactic acid</topic><topic>Lactic Acid - biosynthesis</topic><topic>Lactic Acid - isolation & purification</topic><topic>Lactic acid bacteria</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - metabolism</topic><topic>Metabolic engineering</topic><topic>Nutritional requirements</topic><topic>Polylactic acid</topic><topic>polylactide</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>recombinant cellulolytic strategy</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharides</topic><topic>Starters</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gandini, Chiara</creatorcontrib><creatorcontrib>Tarraran, Loredana</creatorcontrib><creatorcontrib>Kalemasi, Denis</creatorcontrib><creatorcontrib>Pessione, Enrica</creatorcontrib><creatorcontrib>Mazzoli, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gandini, Chiara</au><au>Tarraran, Loredana</au><au>Kalemasi, Denis</au><au>Pessione, Enrica</au><au>Mazzoli, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2017-12</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>2807</spage><epage>2817</epage><pages>2807-2817</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.
In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28802003</pmid><doi>10.1002/bit.26400</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7674-8187</orcidid><orcidid>https://orcid.org/0000-0002-8245-1766</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2017-12, Vol.114 (12), p.2807-2817 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1928514538 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bacteria beta‐glycosidase Biodegradability Biodegradable materials Biodegradation Biological control Bioprocessing Biorefineries Cellooligosaccharides cellulase Cellulose Cellulose - analogs & derivatives Cellulose - genetics Cellulose - metabolism Consolidation Dextrins - genetics Dextrins - metabolism Endoglucanase Fermentation Genetic Enhancement - methods Glucosidase Lactic acid Lactic Acid - biosynthesis Lactic Acid - isolation & purification Lactic acid bacteria Lactococcus lactis Lactococcus lactis - genetics Lactococcus lactis - metabolism Metabolic engineering Nutritional requirements Polylactic acid polylactide Polymers Polysaccharides recombinant cellulolytic strategy Recombinant Proteins - metabolism Recombination, Genetic - genetics Saccharides Starters Substrates |
title | Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombinant%20Lactococcus%20lactis%20for%20efficient%20conversion%20of%20cellodextrins%20into%20L%E2%80%90lactic%20acid&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Gandini,%20Chiara&rft.date=2017-12&rft.volume=114&rft.issue=12&rft.spage=2807&rft.epage=2817&rft.pages=2807-2817&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26400&rft_dat=%3Cproquest_cross%3E1954634686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954634686&rft_id=info:pmid/28802003&rfr_iscdi=true |