Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid

Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main ferment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2017-12, Vol.114 (12), p.2807-2817
Hauptverfasser: Gandini, Chiara, Tarraran, Loredana, Kalemasi, Denis, Pessione, Enrica, Mazzoli, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2817
container_issue 12
container_start_page 2807
container_title Biotechnology and bioengineering
container_volume 114
creator Gandini, Chiara
Tarraran, Loredana
Kalemasi, Denis
Pessione, Enrica
Mazzoli, Roberto
description Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA. In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.
doi_str_mv 10.1002/bit.26400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1928514538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1954634686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOl4WvoAE3OiizkmapslSB28wIMi4lNKmCUTaRpNWnZ2P4DP6JGasuhBcnXPgOx8_P0L7BE4IAJ1Wtj-hnAGsoQkBmSdAJayjCQDwJM0k3ULbITzEMxecb6ItKgRQgHSC7m-1cm1lu7Lr8bxUvVNOqSHgJu42YOM81sZYZXUElOuetQ_WddgZrHTTuFq_9t52Aduud3j-8fb-9alwqWy9izZM2QS99z130N3F-WJ2lcxvLq9np_NEpRIgIcCINpoZKrmWKeGCgWFaCJmLmLLOyqoiMqtqUBSMYbTMM15LIassZdTwdAcdjd5H754GHfqitWEVr-y0G0JBJBUZYVkqInr4B31wg-9iukhljKeMi5XweKSUdyF4bYpHb9vSLwsCxarzInZefHUe2YNv41C1uv4lf0qOwHQEXmyjl_-birPrxaj8BMgQivM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1954634686</pqid></control><display><type>article</type><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</creator><creatorcontrib>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</creatorcontrib><description>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA. In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26400</identifier><identifier>PMID: 28802003</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; beta‐glycosidase ; Biodegradability ; Biodegradable materials ; Biodegradation ; Biological control ; Bioprocessing ; Biorefineries ; Cellooligosaccharides ; cellulase ; Cellulose ; Cellulose - analogs &amp; derivatives ; Cellulose - genetics ; Cellulose - metabolism ; Consolidation ; Dextrins - genetics ; Dextrins - metabolism ; Endoglucanase ; Fermentation ; Genetic Enhancement - methods ; Glucosidase ; Lactic acid ; Lactic Acid - biosynthesis ; Lactic Acid - isolation &amp; purification ; Lactic acid bacteria ; Lactococcus lactis ; Lactococcus lactis - genetics ; Lactococcus lactis - metabolism ; Metabolic engineering ; Nutritional requirements ; Polylactic acid ; polylactide ; Polymers ; Polysaccharides ; recombinant cellulolytic strategy ; Recombinant Proteins - metabolism ; Recombination, Genetic - genetics ; Saccharides ; Starters ; Substrates</subject><ispartof>Biotechnology and bioengineering, 2017-12, Vol.114 (12), p.2807-2817</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</citedby><cites>FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</cites><orcidid>0000-0001-7674-8187 ; 0000-0002-8245-1766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26400$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26400$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28802003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gandini, Chiara</creatorcontrib><creatorcontrib>Tarraran, Loredana</creatorcontrib><creatorcontrib>Kalemasi, Denis</creatorcontrib><creatorcontrib>Pessione, Enrica</creatorcontrib><creatorcontrib>Mazzoli, Roberto</creatorcontrib><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA. In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</description><subject>Bacteria</subject><subject>beta‐glycosidase</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradation</subject><subject>Biological control</subject><subject>Bioprocessing</subject><subject>Biorefineries</subject><subject>Cellooligosaccharides</subject><subject>cellulase</subject><subject>Cellulose</subject><subject>Cellulose - analogs &amp; derivatives</subject><subject>Cellulose - genetics</subject><subject>Cellulose - metabolism</subject><subject>Consolidation</subject><subject>Dextrins - genetics</subject><subject>Dextrins - metabolism</subject><subject>Endoglucanase</subject><subject>Fermentation</subject><subject>Genetic Enhancement - methods</subject><subject>Glucosidase</subject><subject>Lactic acid</subject><subject>Lactic Acid - biosynthesis</subject><subject>Lactic Acid - isolation &amp; purification</subject><subject>Lactic acid bacteria</subject><subject>Lactococcus lactis</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - metabolism</subject><subject>Metabolic engineering</subject><subject>Nutritional requirements</subject><subject>Polylactic acid</subject><subject>polylactide</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>recombinant cellulolytic strategy</subject><subject>Recombinant Proteins - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharides</subject><subject>Starters</subject><subject>Substrates</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUhoMoOl4WvoAE3OiizkmapslSB28wIMi4lNKmCUTaRpNWnZ2P4DP6JGasuhBcnXPgOx8_P0L7BE4IAJ1Wtj-hnAGsoQkBmSdAJayjCQDwJM0k3ULbITzEMxecb6ItKgRQgHSC7m-1cm1lu7Lr8bxUvVNOqSHgJu42YOM81sZYZXUElOuetQ_WddgZrHTTuFq_9t52Aduud3j-8fb-9alwqWy9izZM2QS99z130N3F-WJ2lcxvLq9np_NEpRIgIcCINpoZKrmWKeGCgWFaCJmLmLLOyqoiMqtqUBSMYbTMM15LIassZdTwdAcdjd5H754GHfqitWEVr-y0G0JBJBUZYVkqInr4B31wg-9iukhljKeMi5XweKSUdyF4bYpHb9vSLwsCxarzInZefHUe2YNv41C1uv4lf0qOwHQEXmyjl_-birPrxaj8BMgQivM</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Gandini, Chiara</creator><creator>Tarraran, Loredana</creator><creator>Kalemasi, Denis</creator><creator>Pessione, Enrica</creator><creator>Mazzoli, Roberto</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7674-8187</orcidid><orcidid>https://orcid.org/0000-0002-8245-1766</orcidid></search><sort><creationdate>201712</creationdate><title>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</title><author>Gandini, Chiara ; Tarraran, Loredana ; Kalemasi, Denis ; Pessione, Enrica ; Mazzoli, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-1041efe4f296e9316840f4e88978003d5abb195bd0c20ff42a756d989b5342f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>beta‐glycosidase</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradation</topic><topic>Biological control</topic><topic>Bioprocessing</topic><topic>Biorefineries</topic><topic>Cellooligosaccharides</topic><topic>cellulase</topic><topic>Cellulose</topic><topic>Cellulose - analogs &amp; derivatives</topic><topic>Cellulose - genetics</topic><topic>Cellulose - metabolism</topic><topic>Consolidation</topic><topic>Dextrins - genetics</topic><topic>Dextrins - metabolism</topic><topic>Endoglucanase</topic><topic>Fermentation</topic><topic>Genetic Enhancement - methods</topic><topic>Glucosidase</topic><topic>Lactic acid</topic><topic>Lactic Acid - biosynthesis</topic><topic>Lactic Acid - isolation &amp; purification</topic><topic>Lactic acid bacteria</topic><topic>Lactococcus lactis</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - metabolism</topic><topic>Metabolic engineering</topic><topic>Nutritional requirements</topic><topic>Polylactic acid</topic><topic>polylactide</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>recombinant cellulolytic strategy</topic><topic>Recombinant Proteins - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharides</topic><topic>Starters</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gandini, Chiara</creatorcontrib><creatorcontrib>Tarraran, Loredana</creatorcontrib><creatorcontrib>Kalemasi, Denis</creatorcontrib><creatorcontrib>Pessione, Enrica</creatorcontrib><creatorcontrib>Mazzoli, Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gandini, Chiara</au><au>Tarraran, Loredana</au><au>Kalemasi, Denis</au><au>Pessione, Enrica</au><au>Mazzoli, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2017-12</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>2807</spage><epage>2817</epage><pages>2807-2817</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Lactic acid bacteria (LAB) are among the most interesting organisms for industrial processes with a long history of application as food starters and biocontrol agents, and an underexploited potential for biorefineries converting biomass into high‐value compounds. Lactic acid (LA), their main fermentation product, is among the most requested chemicals owing to its broad range of applications. Notably, LA polymers, that is, polylactides, have high potential as biodegradable substitutes of fossil‐derived plastics. However, LA production by LAB fermentation is currently too expensive for polylactide to be cost‐competitive with traditional plastics. LAB have complex nutritional requirements and cannot ferment inexpensive substrates such as cellulose. Metabolic engineering could help reduce such nutritional requirements and enable LAB to directly ferment low‐cost polysaccharides. Here, we engineered a Lactococcus lactis strain which constitutively secretes a β‐glucosidase and an endoglucanase. The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer that cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA. In this study, we have engineered a Lactococcus lactis which constitutively secretes a (β‐glucosidase and an endoglucanase). The recombinant strain can grow on cellooligosaccharides up to at least cellooctaose and efficiently metabolizes them to L‐LA in single‐step fermentation. This is the first report of a LAB able to directly metabolize cellooligosaccharides longer than cellohexaose and a significant step toward cost‐sustainable consolidated bioprocessing of cellulose into optically pure LA.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28802003</pmid><doi>10.1002/bit.26400</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7674-8187</orcidid><orcidid>https://orcid.org/0000-0002-8245-1766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2017-12, Vol.114 (12), p.2807-2817
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1928514538
source MEDLINE; Access via Wiley Online Library
subjects Bacteria
beta‐glycosidase
Biodegradability
Biodegradable materials
Biodegradation
Biological control
Bioprocessing
Biorefineries
Cellooligosaccharides
cellulase
Cellulose
Cellulose - analogs & derivatives
Cellulose - genetics
Cellulose - metabolism
Consolidation
Dextrins - genetics
Dextrins - metabolism
Endoglucanase
Fermentation
Genetic Enhancement - methods
Glucosidase
Lactic acid
Lactic Acid - biosynthesis
Lactic Acid - isolation & purification
Lactic acid bacteria
Lactococcus lactis
Lactococcus lactis - genetics
Lactococcus lactis - metabolism
Metabolic engineering
Nutritional requirements
Polylactic acid
polylactide
Polymers
Polysaccharides
recombinant cellulolytic strategy
Recombinant Proteins - metabolism
Recombination, Genetic - genetics
Saccharides
Starters
Substrates
title Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L‐lactic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombinant%20Lactococcus%20lactis%20for%20efficient%20conversion%20of%20cellodextrins%20into%20L%E2%80%90lactic%20acid&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Gandini,%20Chiara&rft.date=2017-12&rft.volume=114&rft.issue=12&rft.spage=2807&rft.epage=2817&rft.pages=2807-2817&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26400&rft_dat=%3Cproquest_cross%3E1954634686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1954634686&rft_id=info:pmid/28802003&rfr_iscdi=true