Formulation of capillary hysteresis with internal state variables

A thermodynamically consistent framework is proposed for modeling the hysteresis of capillarity in partially saturated porous media. Capillary hysteresis is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of internal state variables. The volume fractions of pore flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2006-07, Vol.42 (7), p.n/a
Hauptverfasser: Wei, C, Dewoolkar, M.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Water resources research
container_volume 42
creator Wei, C
Dewoolkar, M.M
description A thermodynamically consistent framework is proposed for modeling the hysteresis of capillarity in partially saturated porous media. Capillary hysteresis is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of internal state variables. The volume fractions of pore fluids are assumed to be additively decomposed into a reversible part and an irreversible part. The irreversible part of the volumetric moisture content is introduced as one of the internal variables. It is shown that the pumping effect occurring in a porous medium experiencing a wetting/drying cycle is thermodynamically admissible. A generic evolution equation for internal variables is developed. By virtue of the notion of the bounding surface plasticity, a model of capillary hysteresis is developed, which is capable of predicting all types of (primary, secondary, and higher-order) scanning curves within the boundary loop. Provided that the main wetting curve and the main drying curve have been experimentally determined, the proposed model requires only one additional parameter to describe all the scanning curves. The model predictions are compared with experimental measurements found in the literature, showing that the new model is capable of describing the capillary hysteretic phenomena in a variety of partially saturated porous materials.
doi_str_mv 10.1029/2005WR004594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19283812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19283812</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4332-905054c72aa7b4e9344d2c8e4fd6b4c7a6fc5003a41a559e5964974c8708d6b93</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsH7cvJuTJ6OzX9nssRRbBVGpSsHLMk03djVN6m5q7X_vloh48jTM8HtvZh4hJxQuKDB9yQDkZAwgpBY7pEe1EKnSiu-SXhzylHKt9slBCG8AVMhM9Uh_2PjFqsLWNXXSlEmBS1dV6DfJfBNa621wIVm7dp64OrY1VklosbXJJ3qH08qGI7JXYhXs8U89JM_Dq6fBdXp7P7oZ9G9TFJyzVIMEKQrFENVUWM2FmLEit6KcZdM4x6wsJABHQVFKbaXOhFaiyBXkkdD8kJx1vkvffKxsaM3ChcLGY2vbrIKhmuU8pyyC5x1Y-CYEb0uz9G4RXzIUzDYn8zeniPMOX7vKbv5lzWQ8GFPI-HZJ2qlcTOnrV4X-3WSKK2kmdyOjX_QLUPZgRpE_7fgSG4Ov3gXz_MiAcqDRMCr4N-JjgWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19283812</pqid></control><display><type>article</type><title>Formulation of capillary hysteresis with internal state variables</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wei, C ; Dewoolkar, M.M</creator><creatorcontrib>Wei, C ; Dewoolkar, M.M</creatorcontrib><description>A thermodynamically consistent framework is proposed for modeling the hysteresis of capillarity in partially saturated porous media. Capillary hysteresis is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of internal state variables. The volume fractions of pore fluids are assumed to be additively decomposed into a reversible part and an irreversible part. The irreversible part of the volumetric moisture content is introduced as one of the internal variables. It is shown that the pumping effect occurring in a porous medium experiencing a wetting/drying cycle is thermodynamically admissible. A generic evolution equation for internal variables is developed. By virtue of the notion of the bounding surface plasticity, a model of capillary hysteresis is developed, which is capable of predicting all types of (primary, secondary, and higher-order) scanning curves within the boundary loop. Provided that the main wetting curve and the main drying curve have been experimentally determined, the proposed model requires only one additional parameter to describe all the scanning curves. The model predictions are compared with experimental measurements found in the literature, showing that the new model is capable of describing the capillary hysteretic phenomena in a variety of partially saturated porous materials.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2005WR004594</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>capillarity ; capillary hysteresis ; capillary pressure ; hydrologic models ; hysteresis ; internal state variable ; moisture retention characteristics ; partially saturated porous media ; porous media ; pressure ; saturated conditions ; simulation models ; soil pore system ; thermodynamics ; volume ; water pressure ; wetting front</subject><ispartof>Water resources research, 2006-07, Vol.42 (7), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4332-905054c72aa7b4e9344d2c8e4fd6b4c7a6fc5003a41a559e5964974c8708d6b93</citedby><cites>FETCH-LOGICAL-a4332-905054c72aa7b4e9344d2c8e4fd6b4c7a6fc5003a41a559e5964974c8708d6b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005WR004594$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005WR004594$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Wei, C</creatorcontrib><creatorcontrib>Dewoolkar, M.M</creatorcontrib><title>Formulation of capillary hysteresis with internal state variables</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A thermodynamically consistent framework is proposed for modeling the hysteresis of capillarity in partially saturated porous media. Capillary hysteresis is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of internal state variables. The volume fractions of pore fluids are assumed to be additively decomposed into a reversible part and an irreversible part. The irreversible part of the volumetric moisture content is introduced as one of the internal variables. It is shown that the pumping effect occurring in a porous medium experiencing a wetting/drying cycle is thermodynamically admissible. A generic evolution equation for internal variables is developed. By virtue of the notion of the bounding surface plasticity, a model of capillary hysteresis is developed, which is capable of predicting all types of (primary, secondary, and higher-order) scanning curves within the boundary loop. Provided that the main wetting curve and the main drying curve have been experimentally determined, the proposed model requires only one additional parameter to describe all the scanning curves. The model predictions are compared with experimental measurements found in the literature, showing that the new model is capable of describing the capillary hysteretic phenomena in a variety of partially saturated porous materials.</description><subject>capillarity</subject><subject>capillary hysteresis</subject><subject>capillary pressure</subject><subject>hydrologic models</subject><subject>hysteresis</subject><subject>internal state variable</subject><subject>moisture retention characteristics</subject><subject>partially saturated porous media</subject><subject>porous media</subject><subject>pressure</subject><subject>saturated conditions</subject><subject>simulation models</subject><subject>soil pore system</subject><subject>thermodynamics</subject><subject>volume</subject><subject>water pressure</subject><subject>wetting front</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsH7cvJuTJ6OzX9nssRRbBVGpSsHLMk03djVN6m5q7X_vloh48jTM8HtvZh4hJxQuKDB9yQDkZAwgpBY7pEe1EKnSiu-SXhzylHKt9slBCG8AVMhM9Uh_2PjFqsLWNXXSlEmBS1dV6DfJfBNa621wIVm7dp64OrY1VklosbXJJ3qH08qGI7JXYhXs8U89JM_Dq6fBdXp7P7oZ9G9TFJyzVIMEKQrFENVUWM2FmLEit6KcZdM4x6wsJABHQVFKbaXOhFaiyBXkkdD8kJx1vkvffKxsaM3ChcLGY2vbrIKhmuU8pyyC5x1Y-CYEb0uz9G4RXzIUzDYn8zeniPMOX7vKbv5lzWQ8GFPI-HZJ2qlcTOnrV4X-3WSKK2kmdyOjX_QLUPZgRpE_7fgSG4Ov3gXz_MiAcqDRMCr4N-JjgWw</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Wei, C</creator><creator>Dewoolkar, M.M</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200607</creationdate><title>Formulation of capillary hysteresis with internal state variables</title><author>Wei, C ; Dewoolkar, M.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4332-905054c72aa7b4e9344d2c8e4fd6b4c7a6fc5003a41a559e5964974c8708d6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>capillarity</topic><topic>capillary hysteresis</topic><topic>capillary pressure</topic><topic>hydrologic models</topic><topic>hysteresis</topic><topic>internal state variable</topic><topic>moisture retention characteristics</topic><topic>partially saturated porous media</topic><topic>porous media</topic><topic>pressure</topic><topic>saturated conditions</topic><topic>simulation models</topic><topic>soil pore system</topic><topic>thermodynamics</topic><topic>volume</topic><topic>water pressure</topic><topic>wetting front</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, C</creatorcontrib><creatorcontrib>Dewoolkar, M.M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, C</au><au>Dewoolkar, M.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of capillary hysteresis with internal state variables</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2006-07</date><risdate>2006</risdate><volume>42</volume><issue>7</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A thermodynamically consistent framework is proposed for modeling the hysteresis of capillarity in partially saturated porous media. Capillary hysteresis is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of internal state variables. The volume fractions of pore fluids are assumed to be additively decomposed into a reversible part and an irreversible part. The irreversible part of the volumetric moisture content is introduced as one of the internal variables. It is shown that the pumping effect occurring in a porous medium experiencing a wetting/drying cycle is thermodynamically admissible. A generic evolution equation for internal variables is developed. By virtue of the notion of the bounding surface plasticity, a model of capillary hysteresis is developed, which is capable of predicting all types of (primary, secondary, and higher-order) scanning curves within the boundary loop. Provided that the main wetting curve and the main drying curve have been experimentally determined, the proposed model requires only one additional parameter to describe all the scanning curves. The model predictions are compared with experimental measurements found in the literature, showing that the new model is capable of describing the capillary hysteretic phenomena in a variety of partially saturated porous materials.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005WR004594</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2006-07, Vol.42 (7), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_19283812
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects capillarity
capillary hysteresis
capillary pressure
hydrologic models
hysteresis
internal state variable
moisture retention characteristics
partially saturated porous media
porous media
pressure
saturated conditions
simulation models
soil pore system
thermodynamics
volume
water pressure
wetting front
title Formulation of capillary hysteresis with internal state variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20capillary%20hysteresis%20with%20internal%20state%20variables&rft.jtitle=Water%20resources%20research&rft.au=Wei,%20C&rft.date=2006-07&rft.volume=42&rft.issue=7&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2005WR004594&rft_dat=%3Cproquest_cross%3E19283812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19283812&rft_id=info:pmid/&rfr_iscdi=true