Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence
Sounding parameters are examined to determine whether they can help distinguish between Alberta, Canada, severe thunderstorms that spawn significant tornadoes (F2–F4), weak tornadoes (F0–F1), or nontornadic severe storms producing large hail. Parameters investigated included storm-relative helicity...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2006-06, Vol.21 (3), p.336-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 3 |
container_start_page | 336 |
container_title | Weather and forecasting |
container_volume | 21 |
creator | DUPILKA, Max L REUTER, Gerhard W |
description | Sounding parameters are examined to determine whether they can help distinguish between Alberta, Canada, severe thunderstorms that spawn significant tornadoes (F2–F4), weak tornadoes (F0–F1), or nontornadic severe storms producing large hail. Parameters investigated included storm-relative helicity (SRH), precipitable water (PW), and storm convergence. The motivation for analyzing these parameters is that, in theory, they might affect the rate of change of vertical vorticity generation through vortex stretching, vortex tilting, and baroclinic effects. Precipitable water showed statistically significant differences between significant tornadic storms and those severe storms that produced weak tornadoes or no tornadoes. All significant tornadic cases in the dataset used had PW values exceeding 22 mm, with a median value of 24 mm. Values of PW between 19 and 23 mm were generally associated with weak tornadic storms. Computed values of storm convergence, height of the lifted condensation level, and normalized most unstable CAPE did not discriminate between any of the three storm categories. The SRH showed discrimination of significant tornadoes from both weak tornadic and nontornadic severe storm groups. The Alberta data suggest that significant tornadoes tended to occur with SRH > 150 m2 s−2 computed for the 0–3-km layer whereas weak tornadoes were typically formed for values between 30 and 150 m2 s−2. Threshold values of SRH were lower than those suggested in studies based on storm observations throughout much of the United States. |
doi_str_mv | 10.1175/waf922.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19279996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828340908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c3b62c72446df76313df16497dc732a34c120fbe2d034031361c37e2d4ce6cbd3</originalsourceid><addsrcrecordid>eNp1kd9qFTEQxoNY8FgFHyEoihfdY_7tZtO7UjztgUJ7oXi5zCbZmpKTrEm2pS_S5zWHUxAKXg0z32--GWYQ-kDJmlLZfnuASTG2pq_QiraMNERw8RqtSN-zpqdt9wa9zfmOEMJaplboaROT1ZCLC7e4xBTAOI3L7yUYm3It7PAciw3FgccuYPCjTQXwkvcNNty7FMOu6lXOsXbtywYKrPENpIK321N8ab3Trjye4LnOcrMrMHqLH6DYdIIhGHwYpGO4t-nWBm3foaMJfLbvn-Mx-rn5_uP8srm6vtien101WgheGs3HjmnJhOjMJDtOuZloJ5Q0WnIGXGjKyDRaZggXpMod1VzWVGjb6dHwY_Tl4Dun-GexuQw7l7X1HoKNSx6oYlIp1VXw0wvwLi71Wj4PrGd9dVekr9TH_1G0mvC6tKzQ1wOkU8w52WmYk9tBehwoGfY_HH6dbeoPB1rRz89-kDX4KUHQLv_jpaItZ4T_BYLmnSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196334437</pqid></control><display><type>article</type><title>Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>DUPILKA, Max L ; REUTER, Gerhard W</creator><creatorcontrib>DUPILKA, Max L ; REUTER, Gerhard W</creatorcontrib><description>Sounding parameters are examined to determine whether they can help distinguish between Alberta, Canada, severe thunderstorms that spawn significant tornadoes (F2–F4), weak tornadoes (F0–F1), or nontornadic severe storms producing large hail. Parameters investigated included storm-relative helicity (SRH), precipitable water (PW), and storm convergence. The motivation for analyzing these parameters is that, in theory, they might affect the rate of change of vertical vorticity generation through vortex stretching, vortex tilting, and baroclinic effects. Precipitable water showed statistically significant differences between significant tornadic storms and those severe storms that produced weak tornadoes or no tornadoes. All significant tornadic cases in the dataset used had PW values exceeding 22 mm, with a median value of 24 mm. Values of PW between 19 and 23 mm were generally associated with weak tornadic storms. Computed values of storm convergence, height of the lifted condensation level, and normalized most unstable CAPE did not discriminate between any of the three storm categories. The SRH showed discrimination of significant tornadoes from both weak tornadic and nontornadic severe storm groups. The Alberta data suggest that significant tornadoes tended to occur with SRH > 150 m2 s−2 computed for the 0–3-km layer whereas weak tornadoes were typically formed for values between 30 and 150 m2 s−2. Threshold values of SRH were lower than those suggested in studies based on storm observations throughout much of the United States.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/waf922.1</identifier><identifier>CODEN: WEFOE3</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Baroclinic vortices ; Computation ; Convergence ; Cooling ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Hail ; Helicity ; Humidity ; Large hail ; Meteorology ; Parameters ; Precipitable water ; Rain ; Severe storms ; Severe thunderstorms ; Sounding ; Statistical analysis ; Storm forecasting ; Storms ; Storms, hurricanes, tornadoes, thunderstorms ; Stormwater ; Thunderstorms ; Tornadoes ; Velocity ; Vertical vorticity ; Vortices ; Vorticity ; Weather analysis and prediction ; Weather forecasting</subject><ispartof>Weather and forecasting, 2006-06, Vol.21 (3), p.336-346</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jun 2006</rights><rights>Copyright American Meteorological Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c3b62c72446df76313df16497dc732a34c120fbe2d034031361c37e2d4ce6cbd3</citedby><cites>FETCH-LOGICAL-c443t-c3b62c72446df76313df16497dc732a34c120fbe2d034031361c37e2d4ce6cbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17915320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUPILKA, Max L</creatorcontrib><creatorcontrib>REUTER, Gerhard W</creatorcontrib><title>Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence</title><title>Weather and forecasting</title><description>Sounding parameters are examined to determine whether they can help distinguish between Alberta, Canada, severe thunderstorms that spawn significant tornadoes (F2–F4), weak tornadoes (F0–F1), or nontornadic severe storms producing large hail. Parameters investigated included storm-relative helicity (SRH), precipitable water (PW), and storm convergence. The motivation for analyzing these parameters is that, in theory, they might affect the rate of change of vertical vorticity generation through vortex stretching, vortex tilting, and baroclinic effects. Precipitable water showed statistically significant differences between significant tornadic storms and those severe storms that produced weak tornadoes or no tornadoes. All significant tornadic cases in the dataset used had PW values exceeding 22 mm, with a median value of 24 mm. Values of PW between 19 and 23 mm were generally associated with weak tornadic storms. Computed values of storm convergence, height of the lifted condensation level, and normalized most unstable CAPE did not discriminate between any of the three storm categories. The SRH showed discrimination of significant tornadoes from both weak tornadic and nontornadic severe storm groups. The Alberta data suggest that significant tornadoes tended to occur with SRH > 150 m2 s−2 computed for the 0–3-km layer whereas weak tornadoes were typically formed for values between 30 and 150 m2 s−2. Threshold values of SRH were lower than those suggested in studies based on storm observations throughout much of the United States.</description><subject>Baroclinic vortices</subject><subject>Computation</subject><subject>Convergence</subject><subject>Cooling</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Hail</subject><subject>Helicity</subject><subject>Humidity</subject><subject>Large hail</subject><subject>Meteorology</subject><subject>Parameters</subject><subject>Precipitable water</subject><subject>Rain</subject><subject>Severe storms</subject><subject>Severe thunderstorms</subject><subject>Sounding</subject><subject>Statistical analysis</subject><subject>Storm forecasting</subject><subject>Storms</subject><subject>Storms, hurricanes, tornadoes, thunderstorms</subject><subject>Stormwater</subject><subject>Thunderstorms</subject><subject>Tornadoes</subject><subject>Velocity</subject><subject>Vertical vorticity</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Weather analysis and prediction</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kd9qFTEQxoNY8FgFHyEoihfdY_7tZtO7UjztgUJ7oXi5zCbZmpKTrEm2pS_S5zWHUxAKXg0z32--GWYQ-kDJmlLZfnuASTG2pq_QiraMNERw8RqtSN-zpqdt9wa9zfmOEMJaplboaROT1ZCLC7e4xBTAOI3L7yUYm3It7PAciw3FgccuYPCjTQXwkvcNNty7FMOu6lXOsXbtywYKrPENpIK321N8ab3Trjye4LnOcrMrMHqLH6DYdIIhGHwYpGO4t-nWBm3foaMJfLbvn-Mx-rn5_uP8srm6vtien101WgheGs3HjmnJhOjMJDtOuZloJ5Q0WnIGXGjKyDRaZggXpMod1VzWVGjb6dHwY_Tl4Dun-GexuQw7l7X1HoKNSx6oYlIp1VXw0wvwLi71Wj4PrGd9dVekr9TH_1G0mvC6tKzQ1wOkU8w52WmYk9tBehwoGfY_HH6dbeoPB1rRz89-kDX4KUHQLv_jpaItZ4T_BYLmnSI</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>DUPILKA, Max L</creator><creator>REUTER, Gerhard W</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><scope>PRINS</scope></search><sort><creationdate>20060601</creationdate><title>Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence</title><author>DUPILKA, Max L ; REUTER, Gerhard W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c3b62c72446df76313df16497dc732a34c120fbe2d034031361c37e2d4ce6cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Baroclinic vortices</topic><topic>Computation</topic><topic>Convergence</topic><topic>Cooling</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Hail</topic><topic>Helicity</topic><topic>Humidity</topic><topic>Large hail</topic><topic>Meteorology</topic><topic>Parameters</topic><topic>Precipitable water</topic><topic>Rain</topic><topic>Severe storms</topic><topic>Severe thunderstorms</topic><topic>Sounding</topic><topic>Statistical analysis</topic><topic>Storm forecasting</topic><topic>Storms</topic><topic>Storms, hurricanes, tornadoes, thunderstorms</topic><topic>Stormwater</topic><topic>Thunderstorms</topic><topic>Tornadoes</topic><topic>Velocity</topic><topic>Vertical vorticity</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Weather analysis and prediction</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUPILKA, Max L</creatorcontrib><creatorcontrib>REUTER, Gerhard W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career & Technical Education Database</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUPILKA, Max L</au><au>REUTER, Gerhard W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence</atitle><jtitle>Weather and forecasting</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>21</volume><issue>3</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><coden>WEFOE3</coden><abstract>Sounding parameters are examined to determine whether they can help distinguish between Alberta, Canada, severe thunderstorms that spawn significant tornadoes (F2–F4), weak tornadoes (F0–F1), or nontornadic severe storms producing large hail. Parameters investigated included storm-relative helicity (SRH), precipitable water (PW), and storm convergence. The motivation for analyzing these parameters is that, in theory, they might affect the rate of change of vertical vorticity generation through vortex stretching, vortex tilting, and baroclinic effects. Precipitable water showed statistically significant differences between significant tornadic storms and those severe storms that produced weak tornadoes or no tornadoes. All significant tornadic cases in the dataset used had PW values exceeding 22 mm, with a median value of 24 mm. Values of PW between 19 and 23 mm were generally associated with weak tornadic storms. Computed values of storm convergence, height of the lifted condensation level, and normalized most unstable CAPE did not discriminate between any of the three storm categories. The SRH showed discrimination of significant tornadoes from both weak tornadic and nontornadic severe storm groups. The Alberta data suggest that significant tornadoes tended to occur with SRH > 150 m2 s−2 computed for the 0–3-km layer whereas weak tornadoes were typically formed for values between 30 and 150 m2 s−2. Threshold values of SRH were lower than those suggested in studies based on storm observations throughout much of the United States.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/waf922.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8156 |
ispartof | Weather and forecasting, 2006-06, Vol.21 (3), p.336-346 |
issn | 0882-8156 1520-0434 |
language | eng |
recordid | cdi_proquest_miscellaneous_19279996 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Baroclinic vortices Computation Convergence Cooling Datasets Earth, ocean, space Exact sciences and technology External geophysics Hail Helicity Humidity Large hail Meteorology Parameters Precipitable water Rain Severe storms Severe thunderstorms Sounding Statistical analysis Storm forecasting Storms Storms, hurricanes, tornadoes, thunderstorms Stormwater Thunderstorms Tornadoes Velocity Vertical vorticity Vortices Vorticity Weather analysis and prediction Weather forecasting |
title | Forecasting tornadic thunderstorm potential in alberta using environmental sounding data. Part II: Helicity, precipitable water, and storm convergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20tornadic%20thunderstorm%20potential%20in%20alberta%20using%20environmental%20sounding%20data.%20Part%20II:%20Helicity,%20precipitable%20water,%20and%20storm%20convergence&rft.jtitle=Weather%20and%20forecasting&rft.au=DUPILKA,%20Max%20L&rft.date=2006-06-01&rft.volume=21&rft.issue=3&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=0882-8156&rft.eissn=1520-0434&rft.coden=WEFOE3&rft_id=info:doi/10.1175/waf922.1&rft_dat=%3Cproquest_cross%3E2828340908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196334437&rft_id=info:pmid/&rfr_iscdi=true |