Detecting and nowcasting cloudiness using near-surface temperatures on winter nights

A model to deduce cloudiness from automatic measurements of synoptic and road weather stations during winter nights is introduced. The (height-adjusted) cloud amount of each station can be determined from near-surface temperature measurements and precipitation information only. By using the differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteorological applications 2006-06, Vol.13 (2), p.127-139
Hauptverfasser: Grimbacher, Tobias, Schmid, Willi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 127
container_title Meteorological applications
container_volume 13
creator Grimbacher, Tobias
Schmid, Willi
description A model to deduce cloudiness from automatic measurements of synoptic and road weather stations during winter nights is introduced. The (height-adjusted) cloud amount of each station can be determined from near-surface temperature measurements and precipitation information only. By using the difference between the air temperature at surface level and the air temperature 2 m above ground, a correlation coefficient is achieved of up to 0.91 between the calculated cloud amount and observations. The model is applied to a dense network in central Switzerland in order to obtain a two-dimensional cloud map by interpolation. With the help of a tracking algorithm, the displacement of cloud patterns is nowcasted. The procedure was tested using data from winter 2003–4. It works successfully with a forecast range up to about 90 minutes. The results are used to predict a change in surface temperature (in cases with changing cloudiness), and thus allow nowcasting of slippery roads or ground frost.
doi_str_mv 10.1017/S1350482706002167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19279496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1350482706002167</cupid><sourcerecordid>19279496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3723-fbd3243a55906d53ac3d00b31484f9c915ae49c118196f1db4d5c6661ad0004a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqXwAeyyYheYiR0nFitUykMCsaCsLceelFSJU-xEVf-elHaHBKt53TNXulF0iXCNgPnNO7IMeJHmIABSFPlRNEEuZFJAAcdjP56T3f00OgthBYAMESfR4p56Mn3tlrF2NnbdxujwM5qmG2ztKIR4CLuFI-2TMPhKG4p7atfkdT94CnHn4k3tevKxq5effTiPTirdBLo41Gn08TBfzJ6Sl7fH59ndS2JYnrKkKi1LOdNZJkHYjGnDLEDJkBe8kkZipolLg1igFBXaktvMCCFQjzLgmk2jq_3fte--Bgq9autgqGm0o24ICmWaSy7FKMS90PguBE-VWvu61X6rENQuP_Urv5G53TObuqHt_4B6nS9SAIEsBTbS7OCo29LXdklq1Q3ejXH84fkNDY6C-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19279496</pqid></control><display><type>article</type><title>Detecting and nowcasting cloudiness using near-surface temperatures on winter nights</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Grimbacher, Tobias ; Schmid, Willi</creator><creatorcontrib>Grimbacher, Tobias ; Schmid, Willi</creatorcontrib><description>A model to deduce cloudiness from automatic measurements of synoptic and road weather stations during winter nights is introduced. The (height-adjusted) cloud amount of each station can be determined from near-surface temperature measurements and precipitation information only. By using the difference between the air temperature at surface level and the air temperature 2 m above ground, a correlation coefficient is achieved of up to 0.91 between the calculated cloud amount and observations. The model is applied to a dense network in central Switzerland in order to obtain a two-dimensional cloud map by interpolation. With the help of a tracking algorithm, the displacement of cloud patterns is nowcasted. The procedure was tested using data from winter 2003–4. It works successfully with a forecast range up to about 90 minutes. The results are used to predict a change in surface temperature (in cases with changing cloudiness), and thus allow nowcasting of slippery roads or ground frost.</description><identifier>ISSN: 1350-4827</identifier><identifier>EISSN: 1469-8080</identifier><identifier>DOI: 10.1017/S1350482706002167</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>advection ; cloud amount ; cloud prediction ; nowcasting ; post frontal clearing ; road surface temperature ; tracking</subject><ispartof>Meteorological applications, 2006-06, Vol.13 (2), p.127-139</ispartof><rights>2006 Royal Meteorological Society</rights><rights>Copyright © 2006 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3723-fbd3243a55906d53ac3d00b31484f9c915ae49c118196f1db4d5c6661ad0004a3</citedby><cites>FETCH-LOGICAL-c3723-fbd3243a55906d53ac3d00b31484f9c915ae49c118196f1db4d5c6661ad0004a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grimbacher, Tobias</creatorcontrib><creatorcontrib>Schmid, Willi</creatorcontrib><title>Detecting and nowcasting cloudiness using near-surface temperatures on winter nights</title><title>Meteorological applications</title><addtitle>Meteorol. appl</addtitle><description>A model to deduce cloudiness from automatic measurements of synoptic and road weather stations during winter nights is introduced. The (height-adjusted) cloud amount of each station can be determined from near-surface temperature measurements and precipitation information only. By using the difference between the air temperature at surface level and the air temperature 2 m above ground, a correlation coefficient is achieved of up to 0.91 between the calculated cloud amount and observations. The model is applied to a dense network in central Switzerland in order to obtain a two-dimensional cloud map by interpolation. With the help of a tracking algorithm, the displacement of cloud patterns is nowcasted. The procedure was tested using data from winter 2003–4. It works successfully with a forecast range up to about 90 minutes. The results are used to predict a change in surface temperature (in cases with changing cloudiness), and thus allow nowcasting of slippery roads or ground frost.</description><subject>advection</subject><subject>cloud amount</subject><subject>cloud prediction</subject><subject>nowcasting</subject><subject>post frontal clearing</subject><subject>road surface temperature</subject><subject>tracking</subject><issn>1350-4827</issn><issn>1469-8080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqXwAeyyYheYiR0nFitUykMCsaCsLceelFSJU-xEVf-elHaHBKt53TNXulF0iXCNgPnNO7IMeJHmIABSFPlRNEEuZFJAAcdjP56T3f00OgthBYAMESfR4p56Mn3tlrF2NnbdxujwM5qmG2ztKIR4CLuFI-2TMPhKG4p7atfkdT94CnHn4k3tevKxq5effTiPTirdBLo41Gn08TBfzJ6Sl7fH59ndS2JYnrKkKi1LOdNZJkHYjGnDLEDJkBe8kkZipolLg1igFBXaktvMCCFQjzLgmk2jq_3fte--Bgq9autgqGm0o24ICmWaSy7FKMS90PguBE-VWvu61X6rENQuP_Urv5G53TObuqHt_4B6nS9SAIEsBTbS7OCo29LXdklq1Q3ejXH84fkNDY6C-w</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>Grimbacher, Tobias</creator><creator>Schmid, Willi</creator><general>Cambridge University Press</general><general>John Wiley &amp; Sons, Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200606</creationdate><title>Detecting and nowcasting cloudiness using near-surface temperatures on winter nights</title><author>Grimbacher, Tobias ; Schmid, Willi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3723-fbd3243a55906d53ac3d00b31484f9c915ae49c118196f1db4d5c6661ad0004a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>advection</topic><topic>cloud amount</topic><topic>cloud prediction</topic><topic>nowcasting</topic><topic>post frontal clearing</topic><topic>road surface temperature</topic><topic>tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimbacher, Tobias</creatorcontrib><creatorcontrib>Schmid, Willi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Meteorological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimbacher, Tobias</au><au>Schmid, Willi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and nowcasting cloudiness using near-surface temperatures on winter nights</atitle><jtitle>Meteorological applications</jtitle><addtitle>Meteorol. appl</addtitle><date>2006-06</date><risdate>2006</risdate><volume>13</volume><issue>2</issue><spage>127</spage><epage>139</epage><pages>127-139</pages><issn>1350-4827</issn><eissn>1469-8080</eissn><abstract>A model to deduce cloudiness from automatic measurements of synoptic and road weather stations during winter nights is introduced. The (height-adjusted) cloud amount of each station can be determined from near-surface temperature measurements and precipitation information only. By using the difference between the air temperature at surface level and the air temperature 2 m above ground, a correlation coefficient is achieved of up to 0.91 between the calculated cloud amount and observations. The model is applied to a dense network in central Switzerland in order to obtain a two-dimensional cloud map by interpolation. With the help of a tracking algorithm, the displacement of cloud patterns is nowcasted. The procedure was tested using data from winter 2003–4. It works successfully with a forecast range up to about 90 minutes. The results are used to predict a change in surface temperature (in cases with changing cloudiness), and thus allow nowcasting of slippery roads or ground frost.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1350482706002167</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4827
ispartof Meteorological applications, 2006-06, Vol.13 (2), p.127-139
issn 1350-4827
1469-8080
language eng
recordid cdi_proquest_miscellaneous_19279496
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects advection
cloud amount
cloud prediction
nowcasting
post frontal clearing
road surface temperature
tracking
title Detecting and nowcasting cloudiness using near-surface temperatures on winter nights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20nowcasting%20cloudiness%20using%20near-surface%20temperatures%20on%20winter%20nights&rft.jtitle=Meteorological%20applications&rft.au=Grimbacher,%20Tobias&rft.date=2006-06&rft.volume=13&rft.issue=2&rft.spage=127&rft.epage=139&rft.pages=127-139&rft.issn=1350-4827&rft.eissn=1469-8080&rft_id=info:doi/10.1017/S1350482706002167&rft_dat=%3Cproquest_cross%3E19279496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19279496&rft_id=info:pmid/&rft_cupid=10_1017_S1350482706002167&rfr_iscdi=true