Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer
This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high sta...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2017-10, Vol.6 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced healthcare materials |
container_volume | 6 |
creator | Wu, Guangfu Dai, Ziwen Tang, Xin Lin, Zihong Lo, Pik Kwan Meyyappan, M. Lai, King Wai Chiu |
description | This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection.
The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors. |
doi_str_mv | 10.1002/adhm.201700736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927837873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949508800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</originalsourceid><addsrcrecordid>eNqFkU9P2zAYhy00BAi4ckSWdtml5XWcxM6xogUmwZi0co4c-01jlMSdnW7qDYkvsM-4TzJHZZ20C774fa3Hj__8CLlgMGUAyZUyTTdNgAkAwfMDcpKwIpkkeVZ82NcpHJPzEJ4hjjxjuWRH5DiRosgynp6Q11uv1g32SG8stub3y69FXaMe6NKrPtgwOB9o7TwdGqTfMC4N9gdS1ZvYtREcuzkOY-V66mq6CLpBb3VjFdWutfQp2H5Fv259PCX6l2q1QkPnX2Z0th5Uh_6MHNaqDXj-Np-Sp5vF8vpucv94-_l6dj_RPD5vUheYMsiKVOZodJ1lYBTTQqYV51yyCisjQDPFFOQcGFaQFlIoSCSXOTfAT8mnnXft3fcNhqHsbNDYtqpHtwll_DAhuZCCR_Tjf-iz2_g-3i5SaZGBlDAKpztKexeCx7pce9spvy0ZlGNC5ZhQuU8obrh8026qDs0e_5tHBIod8NO2uH1HV87mdw__5H8AzV-eEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949508800</pqid></control><display><type>article</type><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</creator><creatorcontrib>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</creatorcontrib><description>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection.
The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201700736</identifier><identifier>PMID: 28795534</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Aptamers ; Aptamers, Nucleotide - chemistry ; Bacteria ; Bacterial Typing Techniques - instrumentation ; Binding ; Biosensing Techniques - instrumentation ; Biosensors ; biosensors, detection ; Carrier density ; Carrier mobility ; Charging ; Conductometry - instrumentation ; Deoxyribonucleic acid ; DNA ; DNA aptamers ; E coli ; Electric contacts ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - isolation & purification ; Field effect transistors ; Graphene ; graphene transistors ; Graphite - chemistry ; Nanotubes ; Pyrene ; Pyrenes - chemistry ; Reproducibility of Results ; Selectivity ; Semiconductor devices ; Sensitivity and Specificity ; Stability ; Transistors ; Transistors, Electronic</subject><ispartof>Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</citedby><cites>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</cites><orcidid>0000-0001-5002-2273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201700736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201700736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28795534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Guangfu</creatorcontrib><creatorcontrib>Dai, Ziwen</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Lin, Zihong</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Meyyappan, M.</creatorcontrib><creatorcontrib>Lai, King Wai Chiu</creatorcontrib><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection.
The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</description><subject>Affinity</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Bacteria</subject><subject>Bacterial Typing Techniques - instrumentation</subject><subject>Binding</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>biosensors, detection</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Charging</subject><subject>Conductometry - instrumentation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA aptamers</subject><subject>E coli</subject><subject>Electric contacts</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation & purification</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>graphene transistors</subject><subject>Graphite - chemistry</subject><subject>Nanotubes</subject><subject>Pyrene</subject><subject>Pyrenes - chemistry</subject><subject>Reproducibility of Results</subject><subject>Selectivity</subject><subject>Semiconductor devices</subject><subject>Sensitivity and Specificity</subject><subject>Stability</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P2zAYhy00BAi4ckSWdtml5XWcxM6xogUmwZi0co4c-01jlMSdnW7qDYkvsM-4TzJHZZ20C774fa3Hj__8CLlgMGUAyZUyTTdNgAkAwfMDcpKwIpkkeVZ82NcpHJPzEJ4hjjxjuWRH5DiRosgynp6Q11uv1g32SG8stub3y69FXaMe6NKrPtgwOB9o7TwdGqTfMC4N9gdS1ZvYtREcuzkOY-V66mq6CLpBb3VjFdWutfQp2H5Fv259PCX6l2q1QkPnX2Z0th5Uh_6MHNaqDXj-Np-Sp5vF8vpucv94-_l6dj_RPD5vUheYMsiKVOZodJ1lYBTTQqYV51yyCisjQDPFFOQcGFaQFlIoSCSXOTfAT8mnnXft3fcNhqHsbNDYtqpHtwll_DAhuZCCR_Tjf-iz2_g-3i5SaZGBlDAKpztKexeCx7pce9spvy0ZlGNC5ZhQuU8obrh8026qDs0e_5tHBIod8NO2uH1HV87mdw__5H8AzV-eEw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Wu, Guangfu</creator><creator>Dai, Ziwen</creator><creator>Tang, Xin</creator><creator>Lin, Zihong</creator><creator>Lo, Pik Kwan</creator><creator>Meyyappan, M.</creator><creator>Lai, King Wai Chiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5002-2273</orcidid></search><sort><creationdate>201710</creationdate><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><author>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Bacteria</topic><topic>Bacterial Typing Techniques - instrumentation</topic><topic>Binding</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>biosensors, detection</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Charging</topic><topic>Conductometry - instrumentation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA aptamers</topic><topic>E coli</topic><topic>Electric contacts</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation & purification</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>graphene transistors</topic><topic>Graphite - chemistry</topic><topic>Nanotubes</topic><topic>Pyrene</topic><topic>Pyrenes - chemistry</topic><topic>Reproducibility of Results</topic><topic>Selectivity</topic><topic>Semiconductor devices</topic><topic>Sensitivity and Specificity</topic><topic>Stability</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guangfu</creatorcontrib><creatorcontrib>Dai, Ziwen</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Lin, Zihong</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Meyyappan, M.</creatorcontrib><creatorcontrib>Lai, King Wai Chiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guangfu</au><au>Dai, Ziwen</au><au>Tang, Xin</au><au>Lin, Zihong</au><au>Lo, Pik Kwan</au><au>Meyyappan, M.</au><au>Lai, King Wai Chiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-10</date><risdate>2017</risdate><volume>6</volume><issue>19</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection.
The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28795534</pmid><doi>10.1002/adhm.201700736</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5002-2273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1927837873 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Affinity Aptamers Aptamers, Nucleotide - chemistry Bacteria Bacterial Typing Techniques - instrumentation Binding Biosensing Techniques - instrumentation Biosensors biosensors, detection Carrier density Carrier mobility Charging Conductometry - instrumentation Deoxyribonucleic acid DNA DNA aptamers E coli Electric contacts Electrodes Equipment Design Equipment Failure Analysis Escherichia coli Escherichia coli - classification Escherichia coli - genetics Escherichia coli - isolation & purification Field effect transistors Graphene graphene transistors Graphite - chemistry Nanotubes Pyrene Pyrenes - chemistry Reproducibility of Results Selectivity Semiconductor devices Sensitivity and Specificity Stability Transistors Transistors, Electronic |
title | Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Field%E2%80%90Effect%20Transistors%20for%20the%20Sensitive%20and%20Selective%20Detection%20of%20Escherichia%20coli%20Using%20Pyrene%E2%80%90Tagged%20DNA%20Aptamer&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wu,%20Guangfu&rft.date=2017-10&rft.volume=6&rft.issue=19&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201700736&rft_dat=%3Cproquest_cross%3E1949508800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949508800&rft_id=info:pmid/28795534&rfr_iscdi=true |