Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer

This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2017-10, Vol.6 (19), p.n/a
Hauptverfasser: Wu, Guangfu, Dai, Ziwen, Tang, Xin, Lin, Zihong, Lo, Pik Kwan, Meyyappan, M., Lai, King Wai Chiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced healthcare materials
container_volume 6
creator Wu, Guangfu
Dai, Ziwen
Tang, Xin
Lin, Zihong
Lo, Pik Kwan
Meyyappan, M.
Lai, King Wai Chiu
description This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.
doi_str_mv 10.1002/adhm.201700736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927837873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949508800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</originalsourceid><addsrcrecordid>eNqFkU9P2zAYhy00BAi4ckSWdtml5XWcxM6xogUmwZi0co4c-01jlMSdnW7qDYkvsM-4TzJHZZ20C774fa3Hj__8CLlgMGUAyZUyTTdNgAkAwfMDcpKwIpkkeVZ82NcpHJPzEJ4hjjxjuWRH5DiRosgynp6Q11uv1g32SG8stub3y69FXaMe6NKrPtgwOB9o7TwdGqTfMC4N9gdS1ZvYtREcuzkOY-V66mq6CLpBb3VjFdWutfQp2H5Fv259PCX6l2q1QkPnX2Z0th5Uh_6MHNaqDXj-Np-Sp5vF8vpucv94-_l6dj_RPD5vUheYMsiKVOZodJ1lYBTTQqYV51yyCisjQDPFFOQcGFaQFlIoSCSXOTfAT8mnnXft3fcNhqHsbNDYtqpHtwll_DAhuZCCR_Tjf-iz2_g-3i5SaZGBlDAKpztKexeCx7pce9spvy0ZlGNC5ZhQuU8obrh8026qDs0e_5tHBIod8NO2uH1HV87mdw__5H8AzV-eEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949508800</pqid></control><display><type>article</type><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</creator><creatorcontrib>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</creatorcontrib><description>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201700736</identifier><identifier>PMID: 28795534</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Aptamers ; Aptamers, Nucleotide - chemistry ; Bacteria ; Bacterial Typing Techniques - instrumentation ; Binding ; Biosensing Techniques - instrumentation ; Biosensors ; biosensors, detection ; Carrier density ; Carrier mobility ; Charging ; Conductometry - instrumentation ; Deoxyribonucleic acid ; DNA ; DNA aptamers ; E coli ; Electric contacts ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - isolation &amp; purification ; Field effect transistors ; Graphene ; graphene transistors ; Graphite - chemistry ; Nanotubes ; Pyrene ; Pyrenes - chemistry ; Reproducibility of Results ; Selectivity ; Semiconductor devices ; Sensitivity and Specificity ; Stability ; Transistors ; Transistors, Electronic</subject><ispartof>Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</citedby><cites>FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</cites><orcidid>0000-0001-5002-2273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201700736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201700736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28795534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Guangfu</creatorcontrib><creatorcontrib>Dai, Ziwen</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Lin, Zihong</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Meyyappan, M.</creatorcontrib><creatorcontrib>Lai, King Wai Chiu</creatorcontrib><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</description><subject>Affinity</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Bacteria</subject><subject>Bacterial Typing Techniques - instrumentation</subject><subject>Binding</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>biosensors, detection</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Charging</subject><subject>Conductometry - instrumentation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA aptamers</subject><subject>E coli</subject><subject>Electric contacts</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>graphene transistors</subject><subject>Graphite - chemistry</subject><subject>Nanotubes</subject><subject>Pyrene</subject><subject>Pyrenes - chemistry</subject><subject>Reproducibility of Results</subject><subject>Selectivity</subject><subject>Semiconductor devices</subject><subject>Sensitivity and Specificity</subject><subject>Stability</subject><subject>Transistors</subject><subject>Transistors, Electronic</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P2zAYhy00BAi4ckSWdtml5XWcxM6xogUmwZi0co4c-01jlMSdnW7qDYkvsM-4TzJHZZ20C774fa3Hj__8CLlgMGUAyZUyTTdNgAkAwfMDcpKwIpkkeVZ82NcpHJPzEJ4hjjxjuWRH5DiRosgynp6Q11uv1g32SG8stub3y69FXaMe6NKrPtgwOB9o7TwdGqTfMC4N9gdS1ZvYtREcuzkOY-V66mq6CLpBb3VjFdWutfQp2H5Fv259PCX6l2q1QkPnX2Z0th5Uh_6MHNaqDXj-Np-Sp5vF8vpucv94-_l6dj_RPD5vUheYMsiKVOZodJ1lYBTTQqYV51yyCisjQDPFFOQcGFaQFlIoSCSXOTfAT8mnnXft3fcNhqHsbNDYtqpHtwll_DAhuZCCR_Tjf-iz2_g-3i5SaZGBlDAKpztKexeCx7pce9spvy0ZlGNC5ZhQuU8obrh8026qDs0e_5tHBIod8NO2uH1HV87mdw__5H8AzV-eEw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Wu, Guangfu</creator><creator>Dai, Ziwen</creator><creator>Tang, Xin</creator><creator>Lin, Zihong</creator><creator>Lo, Pik Kwan</creator><creator>Meyyappan, M.</creator><creator>Lai, King Wai Chiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5002-2273</orcidid></search><sort><creationdate>201710</creationdate><title>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</title><author>Wu, Guangfu ; Dai, Ziwen ; Tang, Xin ; Lin, Zihong ; Lo, Pik Kwan ; Meyyappan, M. ; Lai, King Wai Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-f9e41059486edcf550da1c784b33381bebd70c1a1a06301eb04987a0283863d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Bacteria</topic><topic>Bacterial Typing Techniques - instrumentation</topic><topic>Binding</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>biosensors, detection</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Charging</topic><topic>Conductometry - instrumentation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA aptamers</topic><topic>E coli</topic><topic>Electric contacts</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>graphene transistors</topic><topic>Graphite - chemistry</topic><topic>Nanotubes</topic><topic>Pyrene</topic><topic>Pyrenes - chemistry</topic><topic>Reproducibility of Results</topic><topic>Selectivity</topic><topic>Semiconductor devices</topic><topic>Sensitivity and Specificity</topic><topic>Stability</topic><topic>Transistors</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guangfu</creatorcontrib><creatorcontrib>Dai, Ziwen</creatorcontrib><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Lin, Zihong</creatorcontrib><creatorcontrib>Lo, Pik Kwan</creatorcontrib><creatorcontrib>Meyyappan, M.</creatorcontrib><creatorcontrib>Lai, King Wai Chiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guangfu</au><au>Dai, Ziwen</au><au>Tang, Xin</au><au>Lin, Zihong</au><au>Lo, Pik Kwan</au><au>Meyyappan, M.</au><au>Lai, King Wai Chiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2017-10</date><risdate>2017</risdate><volume>6</volume><issue>19</issue><epage>n/a</epage><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>This study reports biosensing using graphene field‐effect transistors with the aid of pyrene‐tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG‐FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. The pyrene‐tagged DNA aptamer‐modified graphene field‐effect transistor biosensors are demonstrated for Escherichia coli (E. coli) detection with high sensitivity, selectivity, and affinity. The change of the carrier density in the probe‐modified graphene due to the attachment of E. coli is correlated with the electrical response of the graphene biosensors.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28795534</pmid><doi>10.1002/adhm.201700736</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5002-2273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2017-10, Vol.6 (19), p.n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1927837873
source Wiley-Blackwell Journals; MEDLINE
subjects Affinity
Aptamers
Aptamers, Nucleotide - chemistry
Bacteria
Bacterial Typing Techniques - instrumentation
Binding
Biosensing Techniques - instrumentation
Biosensors
biosensors, detection
Carrier density
Carrier mobility
Charging
Conductometry - instrumentation
Deoxyribonucleic acid
DNA
DNA aptamers
E coli
Electric contacts
Electrodes
Equipment Design
Equipment Failure Analysis
Escherichia coli
Escherichia coli - classification
Escherichia coli - genetics
Escherichia coli - isolation & purification
Field effect transistors
Graphene
graphene transistors
Graphite - chemistry
Nanotubes
Pyrene
Pyrenes - chemistry
Reproducibility of Results
Selectivity
Semiconductor devices
Sensitivity and Specificity
Stability
Transistors
Transistors, Electronic
title Graphene Field‐Effect Transistors for the Sensitive and Selective Detection of Escherichia coli Using Pyrene‐Tagged DNA Aptamer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Field%E2%80%90Effect%20Transistors%20for%20the%20Sensitive%20and%20Selective%20Detection%20of%20Escherichia%20coli%20Using%20Pyrene%E2%80%90Tagged%20DNA%20Aptamer&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Wu,%20Guangfu&rft.date=2017-10&rft.volume=6&rft.issue=19&rft.epage=n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201700736&rft_dat=%3Cproquest_cross%3E1949508800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949508800&rft_id=info:pmid/28795534&rfr_iscdi=true