Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii

Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2017-09, Vol.175 (1), p.376-391
Hauptverfasser: Coneva, Viktoriya, Frank, Margaret H., de Luis Balaguer, Maria A., Li, Mao, Sozzani, Rosangela, Chitwood, Daniel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 1
container_start_page 376
container_title Plant physiology (Bethesda)
container_volume 175
creator Coneva, Viktoriya
Frank, Margaret H.
de Luis Balaguer, Maria A.
Li, Mao
Sozzani, Rosangela
Chitwood, Daniel H.
description Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.
doi_str_mv 10.1104/pp.17.00790
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927829644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26375400</jstor_id><sourcerecordid>26375400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d4cc293a61dc2dd3cedfaaaf5ca58fa6800aa19ded7a37380ee59d32236ae2f93</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EokvhxBnkIxLK4o8kti9IqwIFaYED27M12JOu26wdbAfUf09gS4HTjDSP3pnRQ8hTztacs_bVNK25WjOmDLtHVryTohFdq--TFWNLz7Q2J-RRKVeMMS55-5CcCK1MKzq9ItM5RqzB0U12-1DR1TkjhejpxzSim0fI9BPWHylfF3oRPebxJsRLukUY6G4f3HXEUmiI9A0WzLXZeJgqerpLB6iJfkkjxPlAJ4wRxzGEx-TBAGPBJ7f1lFy8e7s7e99sP59_ONtsG9f2pja-dU4YCT33TngvHfoBAIbOQacH6DVjANx49AqkkpohdsZLIWQPKAYjT8nrY-40fz2gdxhrhtFOORwg39gEwf4_iWFvL9N323WaKcWXgBe3ATl9m7FUewjFLT9AxDQXy41QWpi-bRf05RF1OZWScbhbw5n95chOk-XK_na00M__veyO_SNlAZ4dgatSU_4776Xq2sXpT_8zmls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927829644</pqid></control><display><type>article</type><title>Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Coneva, Viktoriya ; Frank, Margaret H. ; de Luis Balaguer, Maria A. ; Li, Mao ; Sozzani, Rosangela ; Chitwood, Daniel H.</creator><creatorcontrib>Coneva, Viktoriya ; Frank, Margaret H. ; de Luis Balaguer, Maria A. ; Li, Mao ; Sozzani, Rosangela ; Chitwood, Daniel H.</creatorcontrib><description>Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.00790</identifier><identifier>PMID: 28794258</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Adaptation, Physiological - genetics ; Bayes Theorem ; Desert Climate ; Gene Regulatory Networks ; GENES, DEVELOPMENT, AND EVOLUTION ; Organ Specificity ; Phenotype ; Plant Leaves - anatomy &amp; histology ; Plant Leaves - genetics ; Plant Leaves - growth &amp; development ; Plant Leaves - physiology ; Quantitative Trait Loci - genetics ; Sequence Analysis, RNA ; Solanum - anatomy &amp; histology ; Solanum - genetics ; Solanum - growth &amp; development ; Solanum - physiology</subject><ispartof>Plant physiology (Bethesda), 2017-09, Vol.175 (1), p.376-391</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d4cc293a61dc2dd3cedfaaaf5ca58fa6800aa19ded7a37380ee59d32236ae2f93</citedby><orcidid>0000-0002-0640-5135 ; 0000-0002-5964-1764 ; 0000-0003-4875-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26375400$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26375400$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28794258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coneva, Viktoriya</creatorcontrib><creatorcontrib>Frank, Margaret H.</creatorcontrib><creatorcontrib>de Luis Balaguer, Maria A.</creatorcontrib><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Chitwood, Daniel H.</creatorcontrib><title>Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.</description><subject>Adaptation, Physiological - genetics</subject><subject>Bayes Theorem</subject><subject>Desert Climate</subject><subject>Gene Regulatory Networks</subject><subject>GENES, DEVELOPMENT, AND EVOLUTION</subject><subject>Organ Specificity</subject><subject>Phenotype</subject><subject>Plant Leaves - anatomy &amp; histology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Leaves - physiology</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Solanum - anatomy &amp; histology</subject><subject>Solanum - genetics</subject><subject>Solanum - growth &amp; development</subject><subject>Solanum - physiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1v1DAQhi0EokvhxBnkIxLK4o8kti9IqwIFaYED27M12JOu26wdbAfUf09gS4HTjDSP3pnRQ8hTztacs_bVNK25WjOmDLtHVryTohFdq--TFWNLz7Q2J-RRKVeMMS55-5CcCK1MKzq9ItM5RqzB0U12-1DR1TkjhejpxzSim0fI9BPWHylfF3oRPebxJsRLukUY6G4f3HXEUmiI9A0WzLXZeJgqerpLB6iJfkkjxPlAJ4wRxzGEx-TBAGPBJ7f1lFy8e7s7e99sP59_ONtsG9f2pja-dU4YCT33TngvHfoBAIbOQacH6DVjANx49AqkkpohdsZLIWQPKAYjT8nrY-40fz2gdxhrhtFOORwg39gEwf4_iWFvL9N323WaKcWXgBe3ATl9m7FUewjFLT9AxDQXy41QWpi-bRf05RF1OZWScbhbw5n95chOk-XK_na00M__veyO_SNlAZ4dgatSU_4776Xq2sXpT_8zmls</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Coneva, Viktoriya</creator><creator>Frank, Margaret H.</creator><creator>de Luis Balaguer, Maria A.</creator><creator>Li, Mao</creator><creator>Sozzani, Rosangela</creator><creator>Chitwood, Daniel H.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0640-5135</orcidid><orcidid>https://orcid.org/0000-0002-5964-1764</orcidid><orcidid>https://orcid.org/0000-0003-4875-1447</orcidid></search><sort><creationdate>20170901</creationdate><title>Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii</title><author>Coneva, Viktoriya ; Frank, Margaret H. ; de Luis Balaguer, Maria A. ; Li, Mao ; Sozzani, Rosangela ; Chitwood, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d4cc293a61dc2dd3cedfaaaf5ca58fa6800aa19ded7a37380ee59d32236ae2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Bayes Theorem</topic><topic>Desert Climate</topic><topic>Gene Regulatory Networks</topic><topic>GENES, DEVELOPMENT, AND EVOLUTION</topic><topic>Organ Specificity</topic><topic>Phenotype</topic><topic>Plant Leaves - anatomy &amp; histology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Leaves - physiology</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Solanum - anatomy &amp; histology</topic><topic>Solanum - genetics</topic><topic>Solanum - growth &amp; development</topic><topic>Solanum - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coneva, Viktoriya</creatorcontrib><creatorcontrib>Frank, Margaret H.</creatorcontrib><creatorcontrib>de Luis Balaguer, Maria A.</creatorcontrib><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Sozzani, Rosangela</creatorcontrib><creatorcontrib>Chitwood, Daniel H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coneva, Viktoriya</au><au>Frank, Margaret H.</au><au>de Luis Balaguer, Maria A.</au><au>Li, Mao</au><au>Sozzani, Rosangela</au><au>Chitwood, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>175</volume><issue>1</issue><spage>376</spage><epage>391</epage><pages>376-391</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28794258</pmid><doi>10.1104/pp.17.00790</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0640-5135</orcidid><orcidid>https://orcid.org/0000-0002-5964-1764</orcidid><orcidid>https://orcid.org/0000-0003-4875-1447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-09, Vol.175 (1), p.376-391
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_1927829644
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation, Physiological - genetics
Bayes Theorem
Desert Climate
Gene Regulatory Networks
GENES, DEVELOPMENT, AND EVOLUTION
Organ Specificity
Phenotype
Plant Leaves - anatomy & histology
Plant Leaves - genetics
Plant Leaves - growth & development
Plant Leaves - physiology
Quantitative Trait Loci - genetics
Sequence Analysis, RNA
Solanum - anatomy & histology
Solanum - genetics
Solanum - growth & development
Solanum - physiology
title Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato Solanum pennellii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Architecture%20and%20Molecular%20Networks%20Underlying%20Leaf%20Thickness%20in%20Desert-Adapted%20Tomato%20Solanum%20pennellii&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Coneva,%20Viktoriya&rft.date=2017-09-01&rft.volume=175&rft.issue=1&rft.spage=376&rft.epage=391&rft.pages=376-391&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.00790&rft_dat=%3Cjstor_pubme%3E26375400%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927829644&rft_id=info:pmid/28794258&rft_jstor_id=26375400&rfr_iscdi=true