Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction
Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and d...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-09, Vol.11 (9), p.8542-8559 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8559 |
---|---|
container_issue | 9 |
container_start_page | 8542 |
container_title | ACS nano |
container_volume | 11 |
creator | Hémonnot, Clément Y. J Köster, Sarah |
description | Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization. |
doi_str_mv | 10.1021/acsnano.7b03447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927602098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927602098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-4e0d3cea9eb8b7a88286732cfa60ebe89ae242bbd1113d1e05f10144deacb4343</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqUws6GMSCitHTuJM0L5q1TUAZC6WdeOU7lK42InQzdegVfkSXDVwMZ0j3S_c3TvQeiS4DHBCZmA8g00dpxLTBnLj9CQFDSLMc-Wx386JQN05v0a4zTneXaKBgkPIs3pEC1mG1iZZhXZKroztrYro6COXqDVzkDtI2jKaKrroOQuWn5_fjnYRa8K2j0QfPv9vakqB6o1tjlHJ1Ww6Yt-jtD748Pb9DmeL55m09t5DIzhNmYal1RpKLTkMgfOE57lNFEVZFhLzQvQCUukLAkhtCQapxXBhLFSg5KMMjpC14fcrbMfnfat2Bivwp3QaNt5QYokz3CCCx7QyQFVznrvdCW2zmzA7QTBYt-i6FsUfYvBcdWHd3Kjyz_-t7YA3ByA4BRr27km_Ppv3A_h9X64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927602098</pqid></control><display><type>article</type><title>Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hémonnot, Clément Y. J ; Köster, Sarah</creator><creatorcontrib>Hémonnot, Clément Y. J ; Köster, Sarah</creatorcontrib><description>Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b03447</identifier><identifier>PMID: 28787573</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Equipment Design ; Holography - instrumentation ; Holography - methods ; Humans ; Microscopy - instrumentation ; Microscopy - methods ; Optical Imaging - instrumentation ; Optical Imaging - methods ; Optics and Photonics - instrumentation ; Optics and Photonics - methods ; Scattering, Small Angle ; Synchrotrons ; Tomography, X-Ray Computed - instrumentation ; Tomography, X-Ray Computed - methods ; X-Ray Diffraction - instrumentation ; X-Ray Diffraction - methods</subject><ispartof>ACS nano, 2017-09, Vol.11 (9), p.8542-8559</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-4e0d3cea9eb8b7a88286732cfa60ebe89ae242bbd1113d1e05f10144deacb4343</citedby><cites>FETCH-LOGICAL-a440t-4e0d3cea9eb8b7a88286732cfa60ebe89ae242bbd1113d1e05f10144deacb4343</cites><orcidid>0000-0002-0009-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b03447$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b03447$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28787573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hémonnot, Clément Y. J</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><title>Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.</description><subject>Animals</subject><subject>Equipment Design</subject><subject>Holography - instrumentation</subject><subject>Holography - methods</subject><subject>Humans</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Optical Imaging - instrumentation</subject><subject>Optical Imaging - methods</subject><subject>Optics and Photonics - instrumentation</subject><subject>Optics and Photonics - methods</subject><subject>Scattering, Small Angle</subject><subject>Synchrotrons</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X-Ray Diffraction - instrumentation</subject><subject>X-Ray Diffraction - methods</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAUhS0EoqUws6GMSCitHTuJM0L5q1TUAZC6WdeOU7lK42InQzdegVfkSXDVwMZ0j3S_c3TvQeiS4DHBCZmA8g00dpxLTBnLj9CQFDSLMc-Wx386JQN05v0a4zTneXaKBgkPIs3pEC1mG1iZZhXZKroztrYro6COXqDVzkDtI2jKaKrroOQuWn5_fjnYRa8K2j0QfPv9vakqB6o1tjlHJ1Ww6Yt-jtD748Pb9DmeL55m09t5DIzhNmYal1RpKLTkMgfOE57lNFEVZFhLzQvQCUukLAkhtCQapxXBhLFSg5KMMjpC14fcrbMfnfat2Bivwp3QaNt5QYokz3CCCx7QyQFVznrvdCW2zmzA7QTBYt-i6FsUfYvBcdWHd3Kjyz_-t7YA3ByA4BRr27km_Ppv3A_h9X64</recordid><startdate>20170926</startdate><enddate>20170926</enddate><creator>Hémonnot, Clément Y. J</creator><creator>Köster, Sarah</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid></search><sort><creationdate>20170926</creationdate><title>Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction</title><author>Hémonnot, Clément Y. J ; Köster, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-4e0d3cea9eb8b7a88286732cfa60ebe89ae242bbd1113d1e05f10144deacb4343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Equipment Design</topic><topic>Holography - instrumentation</topic><topic>Holography - methods</topic><topic>Humans</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Optical Imaging - instrumentation</topic><topic>Optical Imaging - methods</topic><topic>Optics and Photonics - instrumentation</topic><topic>Optics and Photonics - methods</topic><topic>Scattering, Small Angle</topic><topic>Synchrotrons</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X-Ray Diffraction - instrumentation</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hémonnot, Clément Y. J</creatorcontrib><creatorcontrib>Köster, Sarah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hémonnot, Clément Y. J</au><au>Köster, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-09-26</date><risdate>2017</risdate><volume>11</volume><issue>9</issue><spage>8542</spage><epage>8559</epage><pages>8542-8559</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28787573</pmid><doi>10.1021/acsnano.7b03447</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0009-1024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-09, Vol.11 (9), p.8542-8559 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1927602098 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Equipment Design Holography - instrumentation Holography - methods Humans Microscopy - instrumentation Microscopy - methods Optical Imaging - instrumentation Optical Imaging - methods Optics and Photonics - instrumentation Optics and Photonics - methods Scattering, Small Angle Synchrotrons Tomography, X-Ray Computed - instrumentation Tomography, X-Ray Computed - methods X-Ray Diffraction - instrumentation X-Ray Diffraction - methods |
title | Imaging of Biological Materials and Cells by X‑ray Scattering and Diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Biological%20Materials%20and%20Cells%20by%20X%E2%80%91ray%20Scattering%20and%20Diffraction&rft.jtitle=ACS%20nano&rft.au=He%CC%81monnot,%20Cle%CC%81ment%20Y.%20J&rft.date=2017-09-26&rft.volume=11&rft.issue=9&rft.spage=8542&rft.epage=8559&rft.pages=8542-8559&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b03447&rft_dat=%3Cproquest_cross%3E1927602098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927602098&rft_id=info:pmid/28787573&rfr_iscdi=true |