What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?

What is the maximum visibility attainable in double-slit interference by an electromagnetic field if arbitrary - but reversible - polarization and spatial transformations are applied? Previous attempts at answering this question for electromagnetic fields have emphasized maximizing the visibility un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-07, Vol.25 (15), p.18320-18331
1. Verfasser: Abouraddy, Ayman F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18331
container_issue 15
container_start_page 18320
container_title Optics express
container_volume 25
creator Abouraddy, Ayman F
description What is the maximum visibility attainable in double-slit interference by an electromagnetic field if arbitrary - but reversible - polarization and spatial transformations are applied? Previous attempts at answering this question for electromagnetic fields have emphasized maximizing the visibility under local polarization transformations. I provide a definitive answer in the general setting of partially coherent electromagnetic fields. An analytical formula is derived proving that the maximum visibility is determined by only the two smallest eigenvalues of the 4×4 two-point coherency matrix associated with the electromagnetic field. This answer reveals, for example, that any two points in a spatially incoherent scalar field can always achieve full interference visibility by applying an appropriate reversible transformation spanning both the polarization and spatial degrees of freedom - without loss of energy. Surprisingly, almost all current measures predict zero-visibility for such fields. This counter-intuitive result exploits the higher dimensionality of the Hilbert space associated with vector - rather than scalar - fields to enable coherency conversion between the field's degrees of freedom.
doi_str_mv 10.1364/OE.25.018320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927598552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927598552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-94ed3c26e2c46fd3cf942d4d4d5a1bed1de8ac505a3679a7650ed92e19171db23</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4Mobk5vniU3PdiZpE3bnETG_AGDXRTxVNLkdYuk7UxSseAfb8emyDu8L4_P-xy-CJ1TMqVxmtws51PGp4TmMSMHaEyJSKKE5NnhvzxCJ96_E0KTTGTHaMTyLBcxFWP0_bqWARuPwxpwLb9M3dVYhiBNI0sL-NN4UxprQo_LHku8kS4YaW2PVbsGB03AYEEF19Zy1UAwClcGrMamwW9t16wuPdZtN6giP1iGcwBXbR8V3J6io0paD2f7PUEv9_Pn2WO0WD48ze4WkYqZCJFIQMeKpcBUklZDrETCdDIMl7QETTXkUnHCZZxmQmYpJ6AFAypoRnXJ4gm62nk3rv3owIeiNl6BtbKBtvMFFSzjIud8i17vUOVa7x1UxcaZWrq-oKTY9l0s5wXjxa7vAb_Ym7uyBv0H_xYc_wDlR31-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927598552</pqid></control><display><type>article</type><title>What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Abouraddy, Ayman F</creator><creatorcontrib>Abouraddy, Ayman F</creatorcontrib><description>What is the maximum visibility attainable in double-slit interference by an electromagnetic field if arbitrary - but reversible - polarization and spatial transformations are applied? Previous attempts at answering this question for electromagnetic fields have emphasized maximizing the visibility under local polarization transformations. I provide a definitive answer in the general setting of partially coherent electromagnetic fields. An analytical formula is derived proving that the maximum visibility is determined by only the two smallest eigenvalues of the 4×4 two-point coherency matrix associated with the electromagnetic field. This answer reveals, for example, that any two points in a spatially incoherent scalar field can always achieve full interference visibility by applying an appropriate reversible transformation spanning both the polarization and spatial degrees of freedom - without loss of energy. Surprisingly, almost all current measures predict zero-visibility for such fields. This counter-intuitive result exploits the higher dimensionality of the Hilbert space associated with vector - rather than scalar - fields to enable coherency conversion between the field's degrees of freedom.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.25.018320</identifier><identifier>PMID: 28789319</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2017-07, Vol.25 (15), p.18320-18331</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-94ed3c26e2c46fd3cf942d4d4d5a1bed1de8ac505a3679a7650ed92e19171db23</citedby><cites>FETCH-LOGICAL-c329t-94ed3c26e2c46fd3cf942d4d4d5a1bed1de8ac505a3679a7650ed92e19171db23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28789319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abouraddy, Ayman F</creatorcontrib><title>What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>What is the maximum visibility attainable in double-slit interference by an electromagnetic field if arbitrary - but reversible - polarization and spatial transformations are applied? Previous attempts at answering this question for electromagnetic fields have emphasized maximizing the visibility under local polarization transformations. I provide a definitive answer in the general setting of partially coherent electromagnetic fields. An analytical formula is derived proving that the maximum visibility is determined by only the two smallest eigenvalues of the 4×4 two-point coherency matrix associated with the electromagnetic field. This answer reveals, for example, that any two points in a spatially incoherent scalar field can always achieve full interference visibility by applying an appropriate reversible transformation spanning both the polarization and spatial degrees of freedom - without loss of energy. Surprisingly, almost all current measures predict zero-visibility for such fields. This counter-intuitive result exploits the higher dimensionality of the Hilbert space associated with vector - rather than scalar - fields to enable coherency conversion between the field's degrees of freedom.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAUx4Mobk5vniU3PdiZpE3bnETG_AGDXRTxVNLkdYuk7UxSseAfb8emyDu8L4_P-xy-CJ1TMqVxmtws51PGp4TmMSMHaEyJSKKE5NnhvzxCJ96_E0KTTGTHaMTyLBcxFWP0_bqWARuPwxpwLb9M3dVYhiBNI0sL-NN4UxprQo_LHku8kS4YaW2PVbsGB03AYEEF19Zy1UAwClcGrMamwW9t16wuPdZtN6giP1iGcwBXbR8V3J6io0paD2f7PUEv9_Pn2WO0WD48ze4WkYqZCJFIQMeKpcBUklZDrETCdDIMl7QETTXkUnHCZZxmQmYpJ6AFAypoRnXJ4gm62nk3rv3owIeiNl6BtbKBtvMFFSzjIud8i17vUOVa7x1UxcaZWrq-oKTY9l0s5wXjxa7vAb_Ym7uyBv0H_xYc_wDlR31-</recordid><startdate>20170724</startdate><enddate>20170724</enddate><creator>Abouraddy, Ayman F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170724</creationdate><title>What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?</title><author>Abouraddy, Ayman F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-94ed3c26e2c46fd3cf942d4d4d5a1bed1de8ac505a3679a7650ed92e19171db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abouraddy, Ayman F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abouraddy, Ayman F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2017-07-24</date><risdate>2017</risdate><volume>25</volume><issue>15</issue><spage>18320</spage><epage>18331</epage><pages>18320-18331</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>What is the maximum visibility attainable in double-slit interference by an electromagnetic field if arbitrary - but reversible - polarization and spatial transformations are applied? Previous attempts at answering this question for electromagnetic fields have emphasized maximizing the visibility under local polarization transformations. I provide a definitive answer in the general setting of partially coherent electromagnetic fields. An analytical formula is derived proving that the maximum visibility is determined by only the two smallest eigenvalues of the 4×4 two-point coherency matrix associated with the electromagnetic field. This answer reveals, for example, that any two points in a spatially incoherent scalar field can always achieve full interference visibility by applying an appropriate reversible transformation spanning both the polarization and spatial degrees of freedom - without loss of energy. Surprisingly, almost all current measures predict zero-visibility for such fields. This counter-intuitive result exploits the higher dimensionality of the Hilbert space associated with vector - rather than scalar - fields to enable coherency conversion between the field's degrees of freedom.</abstract><cop>United States</cop><pmid>28789319</pmid><doi>10.1364/OE.25.018320</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2017-07, Vol.25 (15), p.18320-18331
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1927598552
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title What is the maximum attainable visibility by a partially coherent electromagnetic field in Young's double-slit interference?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20is%20the%20maximum%20attainable%20visibility%20by%20a%20partially%20coherent%20electromagnetic%20field%20in%20Young's%20double-slit%20interference?&rft.jtitle=Optics%20express&rft.au=Abouraddy,%20Ayman%20F&rft.date=2017-07-24&rft.volume=25&rft.issue=15&rft.spage=18320&rft.epage=18331&rft.pages=18320-18331&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.25.018320&rft_dat=%3Cproquest_cross%3E1927598552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927598552&rft_id=info:pmid/28789319&rfr_iscdi=true