A review of computational models of bone fracture healing

In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2017-11, Vol.55 (11), p.1895-1914
Hauptverfasser: Wang, Monan, Yang, Ning, Wang, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1914
container_issue 11
container_start_page 1895
container_title Medical & biological engineering & computing
container_volume 55
creator Wang, Monan
Yang, Ning
Wang, Xinyu
description In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computational healing models provide a good solution. With the simulation of mechanoregulatory healing models, bioregulatory healing models and coupled mechanobioregulatory healing models, healing outcomes can be predicted. In this review, first, we provide an overview of current computational healing models. Their clinical applications are also presented. Then, the limitations of current models and their corresponding solutions are discussed in this review. Finally, future potentials are presented in this review. Multiscale modeling from the intracellular level to the tissue level is essential, and more clinical applications of computational healing models are required in future research.
doi_str_mv 10.1007/s11517-017-1701-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927306304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951520135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-747cceabae34fb1c355f4f72f1e7f5a3f6a244e691f14e34bddc7b48a61720013</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaqZJm_a4LH7Bghc9hzSdrF3aZk1axX9vSlcRwcMQmHnmDfMQcg70GigVNx4gBRHTUCAoxOyAzEFwiCnn_JDMKXAappDPyIn3W0oTSBN-TGZJLvI058WcFMvI4XuNH5E1kbbtbuhVX9tONVFrK2z82C9th5FxSveDw-gVVVN3m1NyZFTj8Wz_LsjL3e3z6iFeP90_rpbrWHOW97HgQmtUpULGTQmapanhRiQGUJhUMZOphHPMCjDAA1NWlRYlz1UGIqEU2IJcTbk7Z98G9L1sa6-xaVSHdvASikQwmjHKA3r5B93awYVbRioNt4e4NFAwUdpZ7x0auXN1q9ynBCpHr3LyKoNXOXqVLOxc7JOHssXqZ-NbZACSCfBh1G3Q_fr639Qva8eBOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951520135</pqid></control><display><type>article</type><title>A review of computational models of bone fracture healing</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><source>EBSCOhost Business Source Complete</source><creator>Wang, Monan ; Yang, Ning ; Wang, Xinyu</creator><creatorcontrib>Wang, Monan ; Yang, Ning ; Wang, Xinyu</creatorcontrib><description>In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computational healing models provide a good solution. With the simulation of mechanoregulatory healing models, bioregulatory healing models and coupled mechanobioregulatory healing models, healing outcomes can be predicted. In this review, first, we provide an overview of current computational healing models. Their clinical applications are also presented. Then, the limitations of current models and their corresponding solutions are discussed in this review. Finally, future potentials are presented in this review. Multiscale modeling from the intracellular level to the tissue level is essential, and more clinical applications of computational healing models are required in future research.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-017-1701-3</identifier><identifier>PMID: 28785849</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Bone healing ; Computation ; Computer Applications ; Computer Simulation ; Fixation ; Fracture Healing - physiology ; Fractures ; Fractures, Bone - physiopathology ; Healing ; Human Physiology ; Humans ; Imaging ; Mathematical models ; Mechanical stimuli ; Models, Biological ; Radiology ; Review Article ; Reviews ; Stress, Mechanical ; Therapeutic applications</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2017-11, Vol.55 (11), p.1895-1914</ispartof><rights>International Federation for Medical and Biological Engineering 2017</rights><rights>Medical &amp; Biological Engineering &amp; Computing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-747cceabae34fb1c355f4f72f1e7f5a3f6a244e691f14e34bddc7b48a61720013</citedby><cites>FETCH-LOGICAL-c438t-747cceabae34fb1c355f4f72f1e7f5a3f6a244e691f14e34bddc7b48a61720013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-017-1701-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-017-1701-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28785849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Monan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><title>A review of computational models of bone fracture healing</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computational healing models provide a good solution. With the simulation of mechanoregulatory healing models, bioregulatory healing models and coupled mechanobioregulatory healing models, healing outcomes can be predicted. In this review, first, we provide an overview of current computational healing models. Their clinical applications are also presented. Then, the limitations of current models and their corresponding solutions are discussed in this review. Finally, future potentials are presented in this review. Multiscale modeling from the intracellular level to the tissue level is essential, and more clinical applications of computational healing models are required in future research.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Bone healing</subject><subject>Computation</subject><subject>Computer Applications</subject><subject>Computer Simulation</subject><subject>Fixation</subject><subject>Fracture Healing - physiology</subject><subject>Fractures</subject><subject>Fractures, Bone - physiopathology</subject><subject>Healing</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Mechanical stimuli</subject><subject>Models, Biological</subject><subject>Radiology</subject><subject>Review Article</subject><subject>Reviews</subject><subject>Stress, Mechanical</subject><subject>Therapeutic applications</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuXaqZJm_a4LH7Bghc9hzSdrF3aZk1axX9vSlcRwcMQmHnmDfMQcg70GigVNx4gBRHTUCAoxOyAzEFwiCnn_JDMKXAappDPyIn3W0oTSBN-TGZJLvI058WcFMvI4XuNH5E1kbbtbuhVX9tONVFrK2z82C9th5FxSveDw-gVVVN3m1NyZFTj8Wz_LsjL3e3z6iFeP90_rpbrWHOW97HgQmtUpULGTQmapanhRiQGUJhUMZOphHPMCjDAA1NWlRYlz1UGIqEU2IJcTbk7Z98G9L1sa6-xaVSHdvASikQwmjHKA3r5B93awYVbRioNt4e4NFAwUdpZ7x0auXN1q9ynBCpHr3LyKoNXOXqVLOxc7JOHssXqZ-NbZACSCfBh1G3Q_fr639Qva8eBOw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Wang, Monan</creator><creator>Yang, Ning</creator><creator>Wang, Xinyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>A review of computational models of bone fracture healing</title><author>Wang, Monan ; Yang, Ning ; Wang, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-747cceabae34fb1c355f4f72f1e7f5a3f6a244e691f14e34bddc7b48a61720013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Bone healing</topic><topic>Computation</topic><topic>Computer Applications</topic><topic>Computer Simulation</topic><topic>Fixation</topic><topic>Fracture Healing - physiology</topic><topic>Fractures</topic><topic>Fractures, Bone - physiopathology</topic><topic>Healing</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Mechanical stimuli</topic><topic>Models, Biological</topic><topic>Radiology</topic><topic>Review Article</topic><topic>Reviews</topic><topic>Stress, Mechanical</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Monan</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Monan</au><au>Yang, Ning</au><au>Wang, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of computational models of bone fracture healing</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>55</volume><issue>11</issue><spage>1895</spage><epage>1914</epage><pages>1895-1914</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computational healing models provide a good solution. With the simulation of mechanoregulatory healing models, bioregulatory healing models and coupled mechanobioregulatory healing models, healing outcomes can be predicted. In this review, first, we provide an overview of current computational healing models. Their clinical applications are also presented. Then, the limitations of current models and their corresponding solutions are discussed in this review. Finally, future potentials are presented in this review. Multiscale modeling from the intracellular level to the tissue level is essential, and more clinical applications of computational healing models are required in future research.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28785849</pmid><doi>10.1007/s11517-017-1701-3</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2017-11, Vol.55 (11), p.1895-1914
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1927306304
source MEDLINE; SpringerLink (Online service); EBSCOhost Business Source Complete
subjects Animals
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Bone healing
Computation
Computer Applications
Computer Simulation
Fixation
Fracture Healing - physiology
Fractures
Fractures, Bone - physiopathology
Healing
Human Physiology
Humans
Imaging
Mathematical models
Mechanical stimuli
Models, Biological
Radiology
Review Article
Reviews
Stress, Mechanical
Therapeutic applications
title A review of computational models of bone fracture healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20computational%20models%20of%20bone%20fracture%20healing&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Wang,%20Monan&rft.date=2017-11-01&rft.volume=55&rft.issue=11&rft.spage=1895&rft.epage=1914&rft.pages=1895-1914&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-017-1701-3&rft_dat=%3Cproquest_cross%3E1951520135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951520135&rft_id=info:pmid/28785849&rfr_iscdi=true