Changing relative crank angle increases the metabolic cost of leg cycling

Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 2017-10, Vol.117 (10), p.2021-2027
Hauptverfasser: Straw, Asher H., Hoogkamer, Wouter, Kram, Rodger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 10
container_start_page 2021
container_title European journal of applied physiology
container_volume 117
creator Straw, Asher H.
Hoogkamer, Wouter
Kram, Rodger
description Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake ( V ˙ O 2 ) and carbon dioxide production ( V ˙ CO 2 ), and respiratory exchange ratio (RER) for the last 2 min of each trial. Results Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° ( p  
doi_str_mv 10.1007/s00421-017-3691-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927306129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937364291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBcJePGyOkl2N7tHKX5BwUvvIc1Otlv3oya7Qv-9KVuLCJ5mmHnmTXgIuWZwzwDkgweIOYuAyUikeWhOyJTFIo9SweXpsWf5hFx4vwGAjLPsnEx4JrNE5nJK3uZr3ZZVW1KHte6rL6TG6faDhmmNtGqNQ-3R036NtMFer7q6MtR0vqedpTWW1OxMHQIuyZnVtcerQ52R5fPTcv4aLd5f3uaPi8gIyfsoTYUFNMYkCQOdaJRgIbGJ0aywkmteSEx4sYotL2KeWxAY1lpqaYo81WJG7sbYres-B_S9aipvsK51i93gFcu5FJAyngf09g-66QbXhs8FSkiRhnwWKDZSxnXeO7Rq66pGu51ioPaa1ahZBc1qr1lBuLk5JA-rBovjxY_XAPAR8GHVluh-Pf1v6jdW6Yd5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937364291</pqid></control><display><type>article</type><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</creator><creatorcontrib>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</creatorcontrib><description>Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake ( V ˙ O 2 ) and carbon dioxide production ( V ˙ CO 2 ), and respiratory exchange ratio (RER) for the last 2 min of each trial. Results Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° ( p  &lt; 0.001). Conclusions We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-017-3691-0</identifier><identifier>PMID: 28785797</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Arm ; Bicycling ; Bicycling - physiology ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedicine ; Carbon dioxide ; Clinical trials ; Efficiency ; Energy Metabolism ; Human Physiology ; Humans ; Leg ; Leg - physiology ; Male ; Metabolism ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Occupational Medicine/Industrial Medicine ; Original Article ; Oxygen Consumption ; Pulmonary Gas Exchange ; Pulmonary Ventilation ; Random Allocation ; Rehabilitation ; Spinal cord injuries ; Sports Medicine ; Stroke</subject><ispartof>European journal of applied physiology, 2017-10, Vol.117 (10), p.2021-2027</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>European Journal of Applied Physiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-017-3691-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-017-3691-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28785797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Straw, Asher H.</creatorcontrib><creatorcontrib>Hoogkamer, Wouter</creatorcontrib><creatorcontrib>Kram, Rodger</creatorcontrib><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake ( V ˙ O 2 ) and carbon dioxide production ( V ˙ CO 2 ), and respiratory exchange ratio (RER) for the last 2 min of each trial. Results Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° ( p  &lt; 0.001). Conclusions We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</description><subject>Adult</subject><subject>Arm</subject><subject>Bicycling</subject><subject>Bicycling - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon dioxide</subject><subject>Clinical trials</subject><subject>Efficiency</subject><subject>Energy Metabolism</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Leg</subject><subject>Leg - physiology</subject><subject>Male</subject><subject>Metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Oxygen Consumption</subject><subject>Pulmonary Gas Exchange</subject><subject>Pulmonary Ventilation</subject><subject>Random Allocation</subject><subject>Rehabilitation</subject><subject>Spinal cord injuries</subject><subject>Sports Medicine</subject><subject>Stroke</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBcJePGyOkl2N7tHKX5BwUvvIc1Otlv3oya7Qv-9KVuLCJ5mmHnmTXgIuWZwzwDkgweIOYuAyUikeWhOyJTFIo9SweXpsWf5hFx4vwGAjLPsnEx4JrNE5nJK3uZr3ZZVW1KHte6rL6TG6faDhmmNtGqNQ-3R036NtMFer7q6MtR0vqedpTWW1OxMHQIuyZnVtcerQ52R5fPTcv4aLd5f3uaPi8gIyfsoTYUFNMYkCQOdaJRgIbGJ0aywkmteSEx4sYotL2KeWxAY1lpqaYo81WJG7sbYres-B_S9aipvsK51i93gFcu5FJAyngf09g-66QbXhs8FSkiRhnwWKDZSxnXeO7Rq66pGu51ioPaa1ahZBc1qr1lBuLk5JA-rBovjxY_XAPAR8GHVluh-Pf1v6jdW6Yd5</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Straw, Asher H.</creator><creator>Hoogkamer, Wouter</creator><creator>Kram, Rodger</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><author>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Arm</topic><topic>Bicycling</topic><topic>Bicycling - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon dioxide</topic><topic>Clinical trials</topic><topic>Efficiency</topic><topic>Energy Metabolism</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Leg</topic><topic>Leg - physiology</topic><topic>Male</topic><topic>Metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Oxygen Consumption</topic><topic>Pulmonary Gas Exchange</topic><topic>Pulmonary Ventilation</topic><topic>Random Allocation</topic><topic>Rehabilitation</topic><topic>Spinal cord injuries</topic><topic>Sports Medicine</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straw, Asher H.</creatorcontrib><creatorcontrib>Hoogkamer, Wouter</creatorcontrib><creatorcontrib>Kram, Rodger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straw, Asher H.</au><au>Hoogkamer, Wouter</au><au>Kram, Rodger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changing relative crank angle increases the metabolic cost of leg cycling</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>117</volume><issue>10</issue><spage>2021</spage><epage>2027</epage><pages>2021-2027</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake ( V ˙ O 2 ) and carbon dioxide production ( V ˙ CO 2 ), and respiratory exchange ratio (RER) for the last 2 min of each trial. Results Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° ( p  &lt; 0.001). Conclusions We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28785797</pmid><doi>10.1007/s00421-017-3691-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-6319
ispartof European journal of applied physiology, 2017-10, Vol.117 (10), p.2021-2027
issn 1439-6319
1439-6327
language eng
recordid cdi_proquest_miscellaneous_1927306129
source MEDLINE; SpringerLink Journals
subjects Adult
Arm
Bicycling
Bicycling - physiology
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedicine
Carbon dioxide
Clinical trials
Efficiency
Energy Metabolism
Human Physiology
Humans
Leg
Leg - physiology
Male
Metabolism
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Occupational Medicine/Industrial Medicine
Original Article
Oxygen Consumption
Pulmonary Gas Exchange
Pulmonary Ventilation
Random Allocation
Rehabilitation
Spinal cord injuries
Sports Medicine
Stroke
title Changing relative crank angle increases the metabolic cost of leg cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changing%20relative%20crank%20angle%20increases%20the%20metabolic%20cost%20of%20leg%20cycling&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Straw,%20Asher%20H.&rft.date=2017-10-01&rft.volume=117&rft.issue=10&rft.spage=2021&rft.epage=2027&rft.pages=2021-2027&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-017-3691-0&rft_dat=%3Cproquest_cross%3E1937364291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937364291&rft_id=info:pmid/28785797&rfr_iscdi=true