Changing relative crank angle increases the metabolic cost of leg cycling
Purpose Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. Methods Ten healthy,...
Gespeichert in:
Veröffentlicht in: | European journal of applied physiology 2017-10, Vol.117 (10), p.2021-2027 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2027 |
---|---|
container_issue | 10 |
container_start_page | 2021 |
container_title | European journal of applied physiology |
container_volume | 117 |
creator | Straw, Asher H. Hoogkamer, Wouter Kram, Rodger |
description | Purpose
Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency.
Methods
Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake (
V
˙
O
2
) and carbon dioxide production (
V
˙
CO
2
), and respiratory exchange ratio (RER) for the last 2 min of each trial.
Results
Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° (
p
|
doi_str_mv | 10.1007/s00421-017-3691-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1927306129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937364291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlZ_gBcJePGyOkl2N7tHKX5BwUvvIc1Otlv3oya7Qv-9KVuLCJ5mmHnmTXgIuWZwzwDkgweIOYuAyUikeWhOyJTFIo9SweXpsWf5hFx4vwGAjLPsnEx4JrNE5nJK3uZr3ZZVW1KHte6rL6TG6faDhmmNtGqNQ-3R036NtMFer7q6MtR0vqedpTWW1OxMHQIuyZnVtcerQ52R5fPTcv4aLd5f3uaPi8gIyfsoTYUFNMYkCQOdaJRgIbGJ0aywkmteSEx4sYotL2KeWxAY1lpqaYo81WJG7sbYres-B_S9aipvsK51i93gFcu5FJAyngf09g-66QbXhs8FSkiRhnwWKDZSxnXeO7Rq66pGu51ioPaa1ahZBc1qr1lBuLk5JA-rBovjxY_XAPAR8GHVluh-Pf1v6jdW6Yd5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937364291</pqid></control><display><type>article</type><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</creator><creatorcontrib>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</creatorcontrib><description>Purpose
Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency.
Methods
Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake (
V
˙
O
2
) and carbon dioxide production (
V
˙
CO
2
), and respiratory exchange ratio (RER) for the last 2 min of each trial.
Results
Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° (
p
< 0.001).
Conclusions
We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-017-3691-0</identifier><identifier>PMID: 28785797</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Arm ; Bicycling ; Bicycling - physiology ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedicine ; Carbon dioxide ; Clinical trials ; Efficiency ; Energy Metabolism ; Human Physiology ; Humans ; Leg ; Leg - physiology ; Male ; Metabolism ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Occupational Medicine/Industrial Medicine ; Original Article ; Oxygen Consumption ; Pulmonary Gas Exchange ; Pulmonary Ventilation ; Random Allocation ; Rehabilitation ; Spinal cord injuries ; Sports Medicine ; Stroke</subject><ispartof>European journal of applied physiology, 2017-10, Vol.117 (10), p.2021-2027</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>European Journal of Applied Physiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-017-3691-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-017-3691-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28785797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Straw, Asher H.</creatorcontrib><creatorcontrib>Hoogkamer, Wouter</creatorcontrib><creatorcontrib>Kram, Rodger</creatorcontrib><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose
Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency.
Methods
Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake (
V
˙
O
2
) and carbon dioxide production (
V
˙
CO
2
), and respiratory exchange ratio (RER) for the last 2 min of each trial.
Results
Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° (
p
< 0.001).
Conclusions
We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</description><subject>Adult</subject><subject>Arm</subject><subject>Bicycling</subject><subject>Bicycling - physiology</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon dioxide</subject><subject>Clinical trials</subject><subject>Efficiency</subject><subject>Energy Metabolism</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Leg</subject><subject>Leg - physiology</subject><subject>Male</subject><subject>Metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Oxygen Consumption</subject><subject>Pulmonary Gas Exchange</subject><subject>Pulmonary Ventilation</subject><subject>Random Allocation</subject><subject>Rehabilitation</subject><subject>Spinal cord injuries</subject><subject>Sports Medicine</subject><subject>Stroke</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMotlZ_gBcJePGyOkl2N7tHKX5BwUvvIc1Otlv3oya7Qv-9KVuLCJ5mmHnmTXgIuWZwzwDkgweIOYuAyUikeWhOyJTFIo9SweXpsWf5hFx4vwGAjLPsnEx4JrNE5nJK3uZr3ZZVW1KHte6rL6TG6faDhmmNtGqNQ-3R036NtMFer7q6MtR0vqedpTWW1OxMHQIuyZnVtcerQ52R5fPTcv4aLd5f3uaPi8gIyfsoTYUFNMYkCQOdaJRgIbGJ0aywkmteSEx4sYotL2KeWxAY1lpqaYo81WJG7sbYres-B_S9aipvsK51i93gFcu5FJAyngf09g-66QbXhs8FSkiRhnwWKDZSxnXeO7Rq66pGu51ioPaa1ahZBc1qr1lBuLk5JA-rBovjxY_XAPAR8GHVluh-Pf1v6jdW6Yd5</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Straw, Asher H.</creator><creator>Hoogkamer, Wouter</creator><creator>Kram, Rodger</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Changing relative crank angle increases the metabolic cost of leg cycling</title><author>Straw, Asher H. ; Hoogkamer, Wouter ; Kram, Rodger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-663f0eccc5510a5ae70f05f5ca1df72a2d7e52db4f2d429f03e05fa7a7cd96a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Arm</topic><topic>Bicycling</topic><topic>Bicycling - physiology</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon dioxide</topic><topic>Clinical trials</topic><topic>Efficiency</topic><topic>Energy Metabolism</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Leg</topic><topic>Leg - physiology</topic><topic>Male</topic><topic>Metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Oxygen Consumption</topic><topic>Pulmonary Gas Exchange</topic><topic>Pulmonary Ventilation</topic><topic>Random Allocation</topic><topic>Rehabilitation</topic><topic>Spinal cord injuries</topic><topic>Sports Medicine</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straw, Asher H.</creatorcontrib><creatorcontrib>Hoogkamer, Wouter</creatorcontrib><creatorcontrib>Kram, Rodger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straw, Asher H.</au><au>Hoogkamer, Wouter</au><au>Kram, Rodger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changing relative crank angle increases the metabolic cost of leg cycling</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>117</volume><issue>10</issue><spage>2021</spage><epage>2027</epage><pages>2021-2027</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>Purpose
Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency.
Methods
Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake (
V
˙
O
2
) and carbon dioxide production (
V
˙
CO
2
), and respiratory exchange ratio (RER) for the last 2 min of each trial.
Results
Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° (
p
< 0.001).
Conclusions
We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28785797</pmid><doi>10.1007/s00421-017-3691-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-6319 |
ispartof | European journal of applied physiology, 2017-10, Vol.117 (10), p.2021-2027 |
issn | 1439-6319 1439-6327 |
language | eng |
recordid | cdi_proquest_miscellaneous_1927306129 |
source | MEDLINE; SpringerLink Journals |
subjects | Adult Arm Bicycling Bicycling - physiology Biomechanical Phenomena Biomedical and Life Sciences Biomedicine Carbon dioxide Clinical trials Efficiency Energy Metabolism Human Physiology Humans Leg Leg - physiology Male Metabolism Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Occupational Medicine/Industrial Medicine Original Article Oxygen Consumption Pulmonary Gas Exchange Pulmonary Ventilation Random Allocation Rehabilitation Spinal cord injuries Sports Medicine Stroke |
title | Changing relative crank angle increases the metabolic cost of leg cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changing%20relative%20crank%20angle%20increases%20the%20metabolic%20cost%20of%20leg%20cycling&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Straw,%20Asher%20H.&rft.date=2017-10-01&rft.volume=117&rft.issue=10&rft.spage=2021&rft.epage=2027&rft.pages=2021-2027&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-017-3691-0&rft_dat=%3Cproquest_cross%3E1937364291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937364291&rft_id=info:pmid/28785797&rfr_iscdi=true |