Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity

Diorganotin(IV) and triphenyltin(IV) derivatives of L-proline (HPro) having general formula R2Sn(Pro)2 (R=n-Bu (1), Ph (2)) and Ph3Sn(Pro) (3), respectively, and the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline (phen) with general formula [R2Sn(Pro)(Phen)Cl] an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2017-09, Vol.174, p.182-194
Hauptverfasser: Nath, Mala, Mridula, Kumari, Ranjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue
container_start_page 182
container_title Journal of photochemistry and photobiology. B, Biology
container_volume 174
creator Nath, Mala
Mridula
Kumari, Ranjana
description Diorganotin(IV) and triphenyltin(IV) derivatives of L-proline (HPro) having general formula R2Sn(Pro)2 (R=n-Bu (1), Ph (2)) and Ph3Sn(Pro) (3), respectively, and the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline (phen) with general formula [R2Sn(Pro)(Phen)Cl] and [R3Sn(Pro)(Phen)] (where R=Me (4 and 7), n-Bu (5 and 8), Ph (6 and 9)), respectively, have been synthesized by microwave-assisted method and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) and DART-mass spectral studies. The results suggest bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl] and [Ph3Sn(Pro)(Phen)] around the Sn atom, and the same has been validated by density functional theory calculations (DFT). In vitro DNA binding studies of 1–9 have been investigated by UV–Vis, fluorescence and circular dichroism titrations, viscosity and DNA melting experiments. The observed hypochromic shift in UV–Vis and fluorescence studies evidenced a partial intercalative mode of binding of complexes to CT-DNA. The binding affinity and quenching ability have been quantified in terms of intrinsic binding constant (Kb) and Stern-Volmer quenching constant (Ksv). The determined values suggest that di- and triorganotin(IV) derivatives of L-proline possess lesser affinity to bind with CT-DNA in comparison to the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline. The partial intercalative mode of binding of these complexes with CT DNA has also been supported by a change in the viscosity and melting point of DNA as well as a change in the intensity of positive and negative bands in circular dichroism spectra. The cleavage studies by agarose gel electrophoresis indicate effective cleavage of supercoiled plasmid DNA into its nicked form by all the complexes and even to its linear form in presence of 9. Complexes 1–9 have been synthesized by microwave-assisted reactions and characterized. The results reveal bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl], [R3Sn(Pro)(Phen)] around the Sn atom and the same has been validated by DFT. The complexes bind to CT-DNA via partial intercalation and displayed effective nuclease activity against plasmid pBR322 DNA. [Displa
doi_str_mv 10.1016/j.jphotobiol.2017.07.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1926981225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S101113441631017X</els_id><sourcerecordid>1926981225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f74b5c4c2abfbce6d0f856e31ddf6fc8895af81cdf4fb383f066e86826ada6d83</originalsourceid><addsrcrecordid>eNqFks1uEzEQx1cIREvhFZAlLkXKBns_vA630lKoVD4OhevKa882E23sxfaGhtfmBZgkBSQuWJbGM_79PaPxZBkTfC64kK9W89W49Ml36Id5wUUz57RF8yA7Fqop80Kq4iGduRC5KKvqKHsS44rTqmXzODsqVKN4VdfH2c8PaIL_rjeQ6xgxJrAsbl1aAjnM92yNdxQa8FY7S4FA1id0p1dfXzLj1-MAd7AHxUzwfFyC06QOfkAHjDRsyMeD95p9Xm4jGm-WsEajB2aWOmiTIOAPndC7Gbu4vGF0Y6ZhH4gztoM9lRP0CFNCw0afwCUk-UYPaPcc67YMHdtgCp5dfDxjHTqL7nZfgJvMADpSNSYhIdun2aNeDxGe3duT7Mvl25vz9_n1p3dX52fXual4kfK-qbraVKbQXd8ZkJb3qpZQCmt72RulFrXulTC2r_quVGXPpQRFnZfaamlVeZKdHt6lBnybIKZ2jdHAMGgHfoqtWBRyoURR1IS--Add-Sk4qo4oKXlTkSFKHSj6shgD9O0YcK3DthW83Q1Gu2r_Dka7G4yW0xYNSZ_fJ5i6Ndg_wt-TQMCbAwDUkQ1CaKNBcAYsBjCptR7_n-UXc5LWqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966074196</pqid></control><display><type>article</type><title>Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nath, Mala ; Mridula ; Kumari, Ranjana</creator><creatorcontrib>Nath, Mala ; Mridula ; Kumari, Ranjana</creatorcontrib><description>Diorganotin(IV) and triphenyltin(IV) derivatives of L-proline (HPro) having general formula R2Sn(Pro)2 (R=n-Bu (1), Ph (2)) and Ph3Sn(Pro) (3), respectively, and the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline (phen) with general formula [R2Sn(Pro)(Phen)Cl] and [R3Sn(Pro)(Phen)] (where R=Me (4 and 7), n-Bu (5 and 8), Ph (6 and 9)), respectively, have been synthesized by microwave-assisted method and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) and DART-mass spectral studies. The results suggest bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl] and [Ph3Sn(Pro)(Phen)] around the Sn atom, and the same has been validated by density functional theory calculations (DFT). In vitro DNA binding studies of 1–9 have been investigated by UV–Vis, fluorescence and circular dichroism titrations, viscosity and DNA melting experiments. The observed hypochromic shift in UV–Vis and fluorescence studies evidenced a partial intercalative mode of binding of complexes to CT-DNA. The binding affinity and quenching ability have been quantified in terms of intrinsic binding constant (Kb) and Stern-Volmer quenching constant (Ksv). The determined values suggest that di- and triorganotin(IV) derivatives of L-proline possess lesser affinity to bind with CT-DNA in comparison to the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline. The partial intercalative mode of binding of these complexes with CT DNA has also been supported by a change in the viscosity and melting point of DNA as well as a change in the intensity of positive and negative bands in circular dichroism spectra. The cleavage studies by agarose gel electrophoresis indicate effective cleavage of supercoiled plasmid DNA into its nicked form by all the complexes and even to its linear form in presence of 9. Complexes 1–9 have been synthesized by microwave-assisted reactions and characterized. The results reveal bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl], [R3Sn(Pro)(Phen)] around the Sn atom and the same has been validated by DFT. The complexes bind to CT-DNA via partial intercalation and displayed effective nuclease activity against plasmid pBR322 DNA. [Display omitted] •Microwave assisted synthesis of organotin(IV) derivatives of L-proline•Microwave assisted synthesis of mixed ligands organotin(IV) derivatives of L-proline and 1,10-phenanthroline•In vitro DNA binding studies evidenced a partial intercalative mode of binding.•Complexes displayed efficient cleavage of pBR322 DNA.•Mixed ligands complexes exhibited higher DNA binding affinity and cleavage activity.</description><identifier>ISSN: 1011-1344</identifier><identifier>EISSN: 1873-2682</identifier><identifier>DOI: 10.1016/j.jphotobiol.2017.07.017</identifier><identifier>PMID: 28780455</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Affinity ; Binding ; Chemical Phenomena ; Chemical synthesis ; Chemistry Techniques, Synthetic ; Circular dichroism ; Cleavage ; Coordination compounds ; Density functional theory ; Deoxyribonucleases - metabolism ; Deoxyribonucleic acid ; Derivatives ; DFT ; Dichroism ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA interaction ; Fluorescence ; Gel electrophoresis ; Infrared radiation ; L-Proline ; Ligands ; Mathematical analysis ; Melting ; Melting point ; Microwave-assisted synthesis ; Microwaves ; Models, Molecular ; Molecular Conformation ; NMR ; Nuclear magnetic resonance ; Nuclease ; Nucleic Acid Denaturation ; Organotin ; Organotin Compounds - chemical synthesis ; Organotin Compounds - chemistry ; Organotin Compounds - metabolism ; Organotin Compounds - pharmacology ; Organotin(IV) complex ; pBR322 plasmid cleavage ; Phenanthrolines - chemistry ; Plasmids ; Proline ; Proline - chemistry ; Quantum Theory ; Quenching ; Transition Temperature ; Triorganotin ; Triphenyltin ; Viscosity</subject><ispartof>Journal of photochemistry and photobiology. B, Biology, 2017-09, Vol.174, p.182-194</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f74b5c4c2abfbce6d0f856e31ddf6fc8895af81cdf4fb383f066e86826ada6d83</citedby><cites>FETCH-LOGICAL-c402t-f74b5c4c2abfbce6d0f856e31ddf6fc8895af81cdf4fb383f066e86826ada6d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S101113441631017X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28780455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nath, Mala</creatorcontrib><creatorcontrib>Mridula</creatorcontrib><creatorcontrib>Kumari, Ranjana</creatorcontrib><title>Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity</title><title>Journal of photochemistry and photobiology. B, Biology</title><addtitle>J Photochem Photobiol B</addtitle><description>Diorganotin(IV) and triphenyltin(IV) derivatives of L-proline (HPro) having general formula R2Sn(Pro)2 (R=n-Bu (1), Ph (2)) and Ph3Sn(Pro) (3), respectively, and the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline (phen) with general formula [R2Sn(Pro)(Phen)Cl] and [R3Sn(Pro)(Phen)] (where R=Me (4 and 7), n-Bu (5 and 8), Ph (6 and 9)), respectively, have been synthesized by microwave-assisted method and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) and DART-mass spectral studies. The results suggest bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl] and [Ph3Sn(Pro)(Phen)] around the Sn atom, and the same has been validated by density functional theory calculations (DFT). In vitro DNA binding studies of 1–9 have been investigated by UV–Vis, fluorescence and circular dichroism titrations, viscosity and DNA melting experiments. The observed hypochromic shift in UV–Vis and fluorescence studies evidenced a partial intercalative mode of binding of complexes to CT-DNA. The binding affinity and quenching ability have been quantified in terms of intrinsic binding constant (Kb) and Stern-Volmer quenching constant (Ksv). The determined values suggest that di- and triorganotin(IV) derivatives of L-proline possess lesser affinity to bind with CT-DNA in comparison to the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline. The partial intercalative mode of binding of these complexes with CT DNA has also been supported by a change in the viscosity and melting point of DNA as well as a change in the intensity of positive and negative bands in circular dichroism spectra. The cleavage studies by agarose gel electrophoresis indicate effective cleavage of supercoiled plasmid DNA into its nicked form by all the complexes and even to its linear form in presence of 9. Complexes 1–9 have been synthesized by microwave-assisted reactions and characterized. The results reveal bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl], [R3Sn(Pro)(Phen)] around the Sn atom and the same has been validated by DFT. The complexes bind to CT-DNA via partial intercalation and displayed effective nuclease activity against plasmid pBR322 DNA. [Display omitted] •Microwave assisted synthesis of organotin(IV) derivatives of L-proline•Microwave assisted synthesis of mixed ligands organotin(IV) derivatives of L-proline and 1,10-phenanthroline•In vitro DNA binding studies evidenced a partial intercalative mode of binding.•Complexes displayed efficient cleavage of pBR322 DNA.•Mixed ligands complexes exhibited higher DNA binding affinity and cleavage activity.</description><subject>Affinity</subject><subject>Binding</subject><subject>Chemical Phenomena</subject><subject>Chemical synthesis</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Circular dichroism</subject><subject>Cleavage</subject><subject>Coordination compounds</subject><subject>Density functional theory</subject><subject>Deoxyribonucleases - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Derivatives</subject><subject>DFT</subject><subject>Dichroism</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA interaction</subject><subject>Fluorescence</subject><subject>Gel electrophoresis</subject><subject>Infrared radiation</subject><subject>L-Proline</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Melting</subject><subject>Melting point</subject><subject>Microwave-assisted synthesis</subject><subject>Microwaves</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclease</subject><subject>Nucleic Acid Denaturation</subject><subject>Organotin</subject><subject>Organotin Compounds - chemical synthesis</subject><subject>Organotin Compounds - chemistry</subject><subject>Organotin Compounds - metabolism</subject><subject>Organotin Compounds - pharmacology</subject><subject>Organotin(IV) complex</subject><subject>pBR322 plasmid cleavage</subject><subject>Phenanthrolines - chemistry</subject><subject>Plasmids</subject><subject>Proline</subject><subject>Proline - chemistry</subject><subject>Quantum Theory</subject><subject>Quenching</subject><subject>Transition Temperature</subject><subject>Triorganotin</subject><subject>Triphenyltin</subject><subject>Viscosity</subject><issn>1011-1344</issn><issn>1873-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1uEzEQx1cIREvhFZAlLkXKBns_vA630lKoVD4OhevKa882E23sxfaGhtfmBZgkBSQuWJbGM_79PaPxZBkTfC64kK9W89W49Ml36Id5wUUz57RF8yA7Fqop80Kq4iGduRC5KKvqKHsS44rTqmXzODsqVKN4VdfH2c8PaIL_rjeQ6xgxJrAsbl1aAjnM92yNdxQa8FY7S4FA1id0p1dfXzLj1-MAd7AHxUzwfFyC06QOfkAHjDRsyMeD95p9Xm4jGm-WsEajB2aWOmiTIOAPndC7Gbu4vGF0Y6ZhH4gztoM9lRP0CFNCw0afwCUk-UYPaPcc67YMHdtgCp5dfDxjHTqL7nZfgJvMADpSNSYhIdun2aNeDxGe3duT7Mvl25vz9_n1p3dX52fXual4kfK-qbraVKbQXd8ZkJb3qpZQCmt72RulFrXulTC2r_quVGXPpQRFnZfaamlVeZKdHt6lBnybIKZ2jdHAMGgHfoqtWBRyoURR1IS--Add-Sk4qo4oKXlTkSFKHSj6shgD9O0YcK3DthW83Q1Gu2r_Dka7G4yW0xYNSZ_fJ5i6Ndg_wt-TQMCbAwDUkQ1CaKNBcAYsBjCptR7_n-UXc5LWqw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Nath, Mala</creator><creator>Mridula</creator><creator>Kumari, Ranjana</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity</title><author>Nath, Mala ; Mridula ; Kumari, Ranjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f74b5c4c2abfbce6d0f856e31ddf6fc8895af81cdf4fb383f066e86826ada6d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Chemical Phenomena</topic><topic>Chemical synthesis</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Circular dichroism</topic><topic>Cleavage</topic><topic>Coordination compounds</topic><topic>Density functional theory</topic><topic>Deoxyribonucleases - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Derivatives</topic><topic>DFT</topic><topic>Dichroism</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA interaction</topic><topic>Fluorescence</topic><topic>Gel electrophoresis</topic><topic>Infrared radiation</topic><topic>L-Proline</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Melting</topic><topic>Melting point</topic><topic>Microwave-assisted synthesis</topic><topic>Microwaves</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclease</topic><topic>Nucleic Acid Denaturation</topic><topic>Organotin</topic><topic>Organotin Compounds - chemical synthesis</topic><topic>Organotin Compounds - chemistry</topic><topic>Organotin Compounds - metabolism</topic><topic>Organotin Compounds - pharmacology</topic><topic>Organotin(IV) complex</topic><topic>pBR322 plasmid cleavage</topic><topic>Phenanthrolines - chemistry</topic><topic>Plasmids</topic><topic>Proline</topic><topic>Proline - chemistry</topic><topic>Quantum Theory</topic><topic>Quenching</topic><topic>Transition Temperature</topic><topic>Triorganotin</topic><topic>Triphenyltin</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nath, Mala</creatorcontrib><creatorcontrib>Mridula</creatorcontrib><creatorcontrib>Kumari, Ranjana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nath, Mala</au><au>Mridula</au><au>Kumari, Ranjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity</atitle><jtitle>Journal of photochemistry and photobiology. B, Biology</jtitle><addtitle>J Photochem Photobiol B</addtitle><date>2017-09</date><risdate>2017</risdate><volume>174</volume><spage>182</spage><epage>194</epage><pages>182-194</pages><issn>1011-1344</issn><eissn>1873-2682</eissn><abstract>Diorganotin(IV) and triphenyltin(IV) derivatives of L-proline (HPro) having general formula R2Sn(Pro)2 (R=n-Bu (1), Ph (2)) and Ph3Sn(Pro) (3), respectively, and the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline (phen) with general formula [R2Sn(Pro)(Phen)Cl] and [R3Sn(Pro)(Phen)] (where R=Me (4 and 7), n-Bu (5 and 8), Ph (6 and 9)), respectively, have been synthesized by microwave-assisted method and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) and DART-mass spectral studies. The results suggest bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl] and [Ph3Sn(Pro)(Phen)] around the Sn atom, and the same has been validated by density functional theory calculations (DFT). In vitro DNA binding studies of 1–9 have been investigated by UV–Vis, fluorescence and circular dichroism titrations, viscosity and DNA melting experiments. The observed hypochromic shift in UV–Vis and fluorescence studies evidenced a partial intercalative mode of binding of complexes to CT-DNA. The binding affinity and quenching ability have been quantified in terms of intrinsic binding constant (Kb) and Stern-Volmer quenching constant (Ksv). The determined values suggest that di- and triorganotin(IV) derivatives of L-proline possess lesser affinity to bind with CT-DNA in comparison to the mixed ligands di-/triorganotin(IV) derivatives of L-proline and 1,10-phenanthroline. The partial intercalative mode of binding of these complexes with CT DNA has also been supported by a change in the viscosity and melting point of DNA as well as a change in the intensity of positive and negative bands in circular dichroism spectra. The cleavage studies by agarose gel electrophoresis indicate effective cleavage of supercoiled plasmid DNA into its nicked form by all the complexes and even to its linear form in presence of 9. Complexes 1–9 have been synthesized by microwave-assisted reactions and characterized. The results reveal bicapped tetrahedron or a skew trapezoidal-bipyramid geometry for R2Sn(Pro)2, a distorted tetrahedral geometry for Ph3Sn(Pro) and a distorted octahedral geometry for [R2Sn(Pro)(Phen)Cl], [R3Sn(Pro)(Phen)] around the Sn atom and the same has been validated by DFT. The complexes bind to CT-DNA via partial intercalation and displayed effective nuclease activity against plasmid pBR322 DNA. [Display omitted] •Microwave assisted synthesis of organotin(IV) derivatives of L-proline•Microwave assisted synthesis of mixed ligands organotin(IV) derivatives of L-proline and 1,10-phenanthroline•In vitro DNA binding studies evidenced a partial intercalative mode of binding.•Complexes displayed efficient cleavage of pBR322 DNA.•Mixed ligands complexes exhibited higher DNA binding affinity and cleavage activity.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><pmid>28780455</pmid><doi>10.1016/j.jphotobiol.2017.07.017</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-1344
ispartof Journal of photochemistry and photobiology. B, Biology, 2017-09, Vol.174, p.182-194
issn 1011-1344
1873-2682
language eng
recordid cdi_proquest_miscellaneous_1926981225
source MEDLINE; Elsevier ScienceDirect Journals
subjects Affinity
Binding
Chemical Phenomena
Chemical synthesis
Chemistry Techniques, Synthetic
Circular dichroism
Cleavage
Coordination compounds
Density functional theory
Deoxyribonucleases - metabolism
Deoxyribonucleic acid
Derivatives
DFT
Dichroism
DNA
DNA - chemistry
DNA - metabolism
DNA interaction
Fluorescence
Gel electrophoresis
Infrared radiation
L-Proline
Ligands
Mathematical analysis
Melting
Melting point
Microwave-assisted synthesis
Microwaves
Models, Molecular
Molecular Conformation
NMR
Nuclear magnetic resonance
Nuclease
Nucleic Acid Denaturation
Organotin
Organotin Compounds - chemical synthesis
Organotin Compounds - chemistry
Organotin Compounds - metabolism
Organotin Compounds - pharmacology
Organotin(IV) complex
pBR322 plasmid cleavage
Phenanthrolines - chemistry
Plasmids
Proline
Proline - chemistry
Quantum Theory
Quenching
Transition Temperature
Triorganotin
Triphenyltin
Viscosity
title Microwave-assisted synthesis of mixed ligands organotin(IV) complexes of 1,10-phenanthroline and l-proline: Physicochemical characterization, DFT calculations, chemotherapeutic potential validation by in vitro DNA binding and nuclease activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave-assisted%20synthesis%20of%20mixed%20ligands%20organotin(IV)%20complexes%20of%201,10-phenanthroline%20and%20l-proline:%20Physicochemical%20characterization,%20DFT%20calculations,%20chemotherapeutic%20potential%20validation%20by%20in%20vitro%20DNA%20binding%20and%20nuclease%20activity&rft.jtitle=Journal%20of%20photochemistry%20and%20photobiology.%20B,%20Biology&rft.au=Nath,%20Mala&rft.date=2017-09&rft.volume=174&rft.spage=182&rft.epage=194&rft.pages=182-194&rft.issn=1011-1344&rft.eissn=1873-2682&rft_id=info:doi/10.1016/j.jphotobiol.2017.07.017&rft_dat=%3Cproquest_cross%3E1926981225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966074196&rft_id=info:pmid/28780455&rft_els_id=S101113441631017X&rfr_iscdi=true