Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement

The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemMedChem 2017-09, Vol.12 (18), p.1481-1490
Hauptverfasser: Sowaileh, Munia F., Hazlitt, Robert A., Colby, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1490
container_issue 18
container_start_page 1481
container_title ChemMedChem
container_volume 12
creator Sowaileh, Munia F.
Hazlitt, Robert A.
Colby, David A.
description The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules. The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.
doi_str_mv 10.1002/cmdc.201700356
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1926980895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940122927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobv64epSAFy-dSZrmx3FWncpEET2HNEuxI21q0yL7783YnODF03vwPu_De18AzjCaYITIlakXZkIQ5gilGdsDYywYSjgWfH_XczkCRyEsEaJUYHEIRkRwQeJ0DB6nbesqo_vKN9CXsP-w8MU2vS7d4DsfBlfqZuXgrPNDC3WAGl5Xvgo-9LarDHy1rdPG1nHlBByU2gV7uq3H4P3u9i2_T-bPs4d8Ok8MTSVLJCGGGJktJNUpzygmuEAs1ZJjqwUz1qQZLphgGRJGWFYIg8sMSZkWBlNJ02NwufG2nf8cbOhVXQVjndON9UNQWBImBRIyi-jFH3Tph66J10WKIkyIJDxSkw1l4sOhs6Vqu6rW3UphpNYpq3XKapdyXDjfaoeitosd_hNrBOQG-KqcXf2jU_nTTf4r_wZ0qIdq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940122927</pqid></control><display><type>article</type><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</creator><creatorcontrib>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</creatorcontrib><description>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules. The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201700356</identifier><identifier>PMID: 28782186</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antiprotozoal Agents - chemistry ; Antiprotozoal Agents - pharmacology ; bioisosteres ; Biological activity ; Chemical properties ; Chemists ; Data processing ; Drug Design ; Drug development ; Flufenamic Acid - analogs &amp; derivatives ; Flufenamic Acid - pharmacology ; Fluorination ; Fluorine ; Group dynamics ; Halogenation ; Light emitting diodes ; NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors ; NADH, NADPH Oxidoreductases - metabolism ; nitro groups ; Optimization ; Oxidoreductases Acting on CH-CH Group Donors - antagonists &amp; inhibitors ; Oxidoreductases Acting on CH-CH Group Donors - metabolism ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - enzymology ; Protein Binding ; Receptors, Cannabinoid - chemistry ; Receptors, Cannabinoid - metabolism ; Sulfides - chemistry ; sulfur ; Sulfur Compounds - chemistry</subject><ispartof>ChemMedChem, 2017-09, Vol.12 (18), p.1481-1490</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</citedby><cites>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201700356$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201700356$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28782186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowaileh, Munia F.</creatorcontrib><creatorcontrib>Hazlitt, Robert A.</creatorcontrib><creatorcontrib>Colby, David A.</creatorcontrib><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules. The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</description><subject>Antiprotozoal Agents - chemistry</subject><subject>Antiprotozoal Agents - pharmacology</subject><subject>bioisosteres</subject><subject>Biological activity</subject><subject>Chemical properties</subject><subject>Chemists</subject><subject>Data processing</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Flufenamic Acid - analogs &amp; derivatives</subject><subject>Flufenamic Acid - pharmacology</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Group dynamics</subject><subject>Halogenation</subject><subject>Light emitting diodes</subject><subject>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>nitro groups</subject><subject>Optimization</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - antagonists &amp; inhibitors</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - metabolism</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Protein Binding</subject><subject>Receptors, Cannabinoid - chemistry</subject><subject>Receptors, Cannabinoid - metabolism</subject><subject>Sulfides - chemistry</subject><subject>sulfur</subject><subject>Sulfur Compounds - chemistry</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUx4Mobv64epSAFy-dSZrmx3FWncpEET2HNEuxI21q0yL7783YnODF03vwPu_De18AzjCaYITIlakXZkIQ5gilGdsDYywYSjgWfH_XczkCRyEsEaJUYHEIRkRwQeJ0DB6nbesqo_vKN9CXsP-w8MU2vS7d4DsfBlfqZuXgrPNDC3WAGl5Xvgo-9LarDHy1rdPG1nHlBByU2gV7uq3H4P3u9i2_T-bPs4d8Ok8MTSVLJCGGGJktJNUpzygmuEAs1ZJjqwUz1qQZLphgGRJGWFYIg8sMSZkWBlNJ02NwufG2nf8cbOhVXQVjndON9UNQWBImBRIyi-jFH3Tph66J10WKIkyIJDxSkw1l4sOhs6Vqu6rW3UphpNYpq3XKapdyXDjfaoeitosd_hNrBOQG-KqcXf2jU_nTTf4r_wZ0qIdq</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Sowaileh, Munia F.</creator><creator>Hazlitt, Robert A.</creator><creator>Colby, David A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170921</creationdate><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><author>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antiprotozoal Agents - chemistry</topic><topic>Antiprotozoal Agents - pharmacology</topic><topic>bioisosteres</topic><topic>Biological activity</topic><topic>Chemical properties</topic><topic>Chemists</topic><topic>Data processing</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Flufenamic Acid - analogs &amp; derivatives</topic><topic>Flufenamic Acid - pharmacology</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Group dynamics</topic><topic>Halogenation</topic><topic>Light emitting diodes</topic><topic>NADH, NADPH Oxidoreductases - antagonists &amp; inhibitors</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>nitro groups</topic><topic>Optimization</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - antagonists &amp; inhibitors</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - metabolism</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Protein Binding</topic><topic>Receptors, Cannabinoid - chemistry</topic><topic>Receptors, Cannabinoid - metabolism</topic><topic>Sulfides - chemistry</topic><topic>sulfur</topic><topic>Sulfur Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowaileh, Munia F.</creatorcontrib><creatorcontrib>Hazlitt, Robert A.</creatorcontrib><creatorcontrib>Colby, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowaileh, Munia F.</au><au>Hazlitt, Robert A.</au><au>Colby, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>12</volume><issue>18</issue><spage>1481</spage><epage>1490</epage><pages>1481-1490</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules. The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28782186</pmid><doi>10.1002/cmdc.201700356</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1860-7179
ispartof ChemMedChem, 2017-09, Vol.12 (18), p.1481-1490
issn 1860-7179
1860-7187
language eng
recordid cdi_proquest_miscellaneous_1926980895
source MEDLINE; Access via Wiley Online Library
subjects Antiprotozoal Agents - chemistry
Antiprotozoal Agents - pharmacology
bioisosteres
Biological activity
Chemical properties
Chemists
Data processing
Drug Design
Drug development
Flufenamic Acid - analogs & derivatives
Flufenamic Acid - pharmacology
Fluorination
Fluorine
Group dynamics
Halogenation
Light emitting diodes
NADH, NADPH Oxidoreductases - antagonists & inhibitors
NADH, NADPH Oxidoreductases - metabolism
nitro groups
Optimization
Oxidoreductases Acting on CH-CH Group Donors - antagonists & inhibitors
Oxidoreductases Acting on CH-CH Group Donors - metabolism
Plasmodium falciparum - drug effects
Plasmodium falciparum - enzymology
Protein Binding
Receptors, Cannabinoid - chemistry
Receptors, Cannabinoid - metabolism
Sulfides - chemistry
sulfur
Sulfur Compounds - chemistry
title Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Pentafluorosulfanyl%20Group%20as%20a%20Bioisosteric%20Replacement&rft.jtitle=ChemMedChem&rft.au=Sowaileh,%20Munia%20F.&rft.date=2017-09-21&rft.volume=12&rft.issue=18&rft.spage=1481&rft.epage=1490&rft.pages=1481-1490&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201700356&rft_dat=%3Cproquest_cross%3E1940122927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940122927&rft_id=info:pmid/28782186&rfr_iscdi=true