Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement
The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properti...
Gespeichert in:
Veröffentlicht in: | ChemMedChem 2017-09, Vol.12 (18), p.1481-1490 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1490 |
---|---|
container_issue | 18 |
container_start_page | 1481 |
container_title | ChemMedChem |
container_volume | 12 |
creator | Sowaileh, Munia F. Hazlitt, Robert A. Colby, David A. |
description | The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules.
The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups. |
doi_str_mv | 10.1002/cmdc.201700356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1926980895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940122927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4Mobv64epSAFy-dSZrmx3FWncpEET2HNEuxI21q0yL7783YnODF03vwPu_De18AzjCaYITIlakXZkIQ5gilGdsDYywYSjgWfH_XczkCRyEsEaJUYHEIRkRwQeJ0DB6nbesqo_vKN9CXsP-w8MU2vS7d4DsfBlfqZuXgrPNDC3WAGl5Xvgo-9LarDHy1rdPG1nHlBByU2gV7uq3H4P3u9i2_T-bPs4d8Ok8MTSVLJCGGGJktJNUpzygmuEAs1ZJjqwUz1qQZLphgGRJGWFYIg8sMSZkWBlNJ02NwufG2nf8cbOhVXQVjndON9UNQWBImBRIyi-jFH3Tph66J10WKIkyIJDxSkw1l4sOhs6Vqu6rW3UphpNYpq3XKapdyXDjfaoeitosd_hNrBOQG-KqcXf2jU_nTTf4r_wZ0qIdq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940122927</pqid></control><display><type>article</type><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</creator><creatorcontrib>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</creatorcontrib><description>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules.
The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201700356</identifier><identifier>PMID: 28782186</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antiprotozoal Agents - chemistry ; Antiprotozoal Agents - pharmacology ; bioisosteres ; Biological activity ; Chemical properties ; Chemists ; Data processing ; Drug Design ; Drug development ; Flufenamic Acid - analogs & derivatives ; Flufenamic Acid - pharmacology ; Fluorination ; Fluorine ; Group dynamics ; Halogenation ; Light emitting diodes ; NADH, NADPH Oxidoreductases - antagonists & inhibitors ; NADH, NADPH Oxidoreductases - metabolism ; nitro groups ; Optimization ; Oxidoreductases Acting on CH-CH Group Donors - antagonists & inhibitors ; Oxidoreductases Acting on CH-CH Group Donors - metabolism ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - enzymology ; Protein Binding ; Receptors, Cannabinoid - chemistry ; Receptors, Cannabinoid - metabolism ; Sulfides - chemistry ; sulfur ; Sulfur Compounds - chemistry</subject><ispartof>ChemMedChem, 2017-09, Vol.12 (18), p.1481-1490</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</citedby><cites>FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201700356$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201700356$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28782186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sowaileh, Munia F.</creatorcontrib><creatorcontrib>Hazlitt, Robert A.</creatorcontrib><creatorcontrib>Colby, David A.</creatorcontrib><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules.
The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</description><subject>Antiprotozoal Agents - chemistry</subject><subject>Antiprotozoal Agents - pharmacology</subject><subject>bioisosteres</subject><subject>Biological activity</subject><subject>Chemical properties</subject><subject>Chemists</subject><subject>Data processing</subject><subject>Drug Design</subject><subject>Drug development</subject><subject>Flufenamic Acid - analogs & derivatives</subject><subject>Flufenamic Acid - pharmacology</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Group dynamics</subject><subject>Halogenation</subject><subject>Light emitting diodes</subject><subject>NADH, NADPH Oxidoreductases - antagonists & inhibitors</subject><subject>NADH, NADPH Oxidoreductases - metabolism</subject><subject>nitro groups</subject><subject>Optimization</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - antagonists & inhibitors</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - metabolism</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Protein Binding</subject><subject>Receptors, Cannabinoid - chemistry</subject><subject>Receptors, Cannabinoid - metabolism</subject><subject>Sulfides - chemistry</subject><subject>sulfur</subject><subject>Sulfur Compounds - chemistry</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAUx4Mobv64epSAFy-dSZrmx3FWncpEET2HNEuxI21q0yL7783YnODF03vwPu_De18AzjCaYITIlakXZkIQ5gilGdsDYywYSjgWfH_XczkCRyEsEaJUYHEIRkRwQeJ0DB6nbesqo_vKN9CXsP-w8MU2vS7d4DsfBlfqZuXgrPNDC3WAGl5Xvgo-9LarDHy1rdPG1nHlBByU2gV7uq3H4P3u9i2_T-bPs4d8Ok8MTSVLJCGGGJktJNUpzygmuEAs1ZJjqwUz1qQZLphgGRJGWFYIg8sMSZkWBlNJ02NwufG2nf8cbOhVXQVjndON9UNQWBImBRIyi-jFH3Tph66J10WKIkyIJDxSkw1l4sOhs6Vqu6rW3UphpNYpq3XKapdyXDjfaoeitosd_hNrBOQG-KqcXf2jU_nTTf4r_wZ0qIdq</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Sowaileh, Munia F.</creator><creator>Hazlitt, Robert A.</creator><creator>Colby, David A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170921</creationdate><title>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</title><author>Sowaileh, Munia F. ; Hazlitt, Robert A. ; Colby, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-922c2c95d94a3754121b063a971ea86cec351b686508c8e6b8c1f50993bc14943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antiprotozoal Agents - chemistry</topic><topic>Antiprotozoal Agents - pharmacology</topic><topic>bioisosteres</topic><topic>Biological activity</topic><topic>Chemical properties</topic><topic>Chemists</topic><topic>Data processing</topic><topic>Drug Design</topic><topic>Drug development</topic><topic>Flufenamic Acid - analogs & derivatives</topic><topic>Flufenamic Acid - pharmacology</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Group dynamics</topic><topic>Halogenation</topic><topic>Light emitting diodes</topic><topic>NADH, NADPH Oxidoreductases - antagonists & inhibitors</topic><topic>NADH, NADPH Oxidoreductases - metabolism</topic><topic>nitro groups</topic><topic>Optimization</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - antagonists & inhibitors</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - metabolism</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Protein Binding</topic><topic>Receptors, Cannabinoid - chemistry</topic><topic>Receptors, Cannabinoid - metabolism</topic><topic>Sulfides - chemistry</topic><topic>sulfur</topic><topic>Sulfur Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sowaileh, Munia F.</creatorcontrib><creatorcontrib>Hazlitt, Robert A.</creatorcontrib><creatorcontrib>Colby, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sowaileh, Munia F.</au><au>Hazlitt, Robert A.</au><au>Colby, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>12</volume><issue>18</issue><spage>1481</spage><epage>1490</epage><pages>1481-1490</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine‐containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert‐butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5‐substituted molecules.
The distinctive properties of the pentafluorosulfanyl group (SF5) and its metabolic stability have prompted many recent pharmaceutical applications. Owing to its relative novelty, a closer look at the potential uses of the SF5 group in medicinal chemistry is fully warranted. This review focuses on the potential of the SF5 group as a bioisosteric replacement of CF3, tert‐butyl, NO2, and halide groups.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28782186</pmid><doi>10.1002/cmdc.201700356</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-7179 |
ispartof | ChemMedChem, 2017-09, Vol.12 (18), p.1481-1490 |
issn | 1860-7179 1860-7187 |
language | eng |
recordid | cdi_proquest_miscellaneous_1926980895 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Antiprotozoal Agents - chemistry Antiprotozoal Agents - pharmacology bioisosteres Biological activity Chemical properties Chemists Data processing Drug Design Drug development Flufenamic Acid - analogs & derivatives Flufenamic Acid - pharmacology Fluorination Fluorine Group dynamics Halogenation Light emitting diodes NADH, NADPH Oxidoreductases - antagonists & inhibitors NADH, NADPH Oxidoreductases - metabolism nitro groups Optimization Oxidoreductases Acting on CH-CH Group Donors - antagonists & inhibitors Oxidoreductases Acting on CH-CH Group Donors - metabolism Plasmodium falciparum - drug effects Plasmodium falciparum - enzymology Protein Binding Receptors, Cannabinoid - chemistry Receptors, Cannabinoid - metabolism Sulfides - chemistry sulfur Sulfur Compounds - chemistry |
title | Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Pentafluorosulfanyl%20Group%20as%20a%20Bioisosteric%20Replacement&rft.jtitle=ChemMedChem&rft.au=Sowaileh,%20Munia%20F.&rft.date=2017-09-21&rft.volume=12&rft.issue=18&rft.spage=1481&rft.epage=1490&rft.pages=1481-1490&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201700356&rft_dat=%3Cproquest_cross%3E1940122927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940122927&rft_id=info:pmid/28782186&rfr_iscdi=true |