Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin

ABSTRACT Mitochondrial kinase PTEN‐induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70‐interacting protein (CHIP) acts as a heat shock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2017-12, Vol.31 (12), p.5234-5245
Hauptverfasser: Chen, Jia, Xue, Jin, Ruan, Jingsong, Zhao, Juan, Tang, Beisha, Duan, Ranhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5245
container_issue 12
container_start_page 5234
container_title The FASEB journal
container_volume 31
creator Chen, Jia
Xue, Jin
Ruan, Jingsong
Zhao, Juan
Tang, Beisha
Duan, Ranhui
description ABSTRACT Mitochondrial kinase PTEN‐induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70‐interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase‐dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild‐type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.—Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. FASEB J. 31, 5234‐5245 (2017). www.fasebj.org
doi_str_mv 10.1096/fj.201700011R
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1926687631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983929371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373R-4e252bb7c20b625da894652aa4b2c51b250eea2771a1fb3f85e04f647a53cd53</originalsourceid><addsrcrecordid>eNp90clv1DAUB2ALUdGhcOSKLHHhktZLvEScYGBoq0qMSu-R49gdTx07tRON5r_HoymLOPT03uHTT28B4B1G5xg1_MJuzwnCAiGE8e0LsMCMoopLjl6CBZINqTin8hS8znl7MAjzV-CUSCFkI-QCjF9TzHHcOK_g8vJqDccUJ6OnDNW9ciFPcHBT1JsY-uSUh_0-2znoycUAuz1UpQv3sI-7QpNRA4wWrl14wNAFOKqkvDce7ty0gWuVHlx4A06s8tm8fapn4G717W55Wd38-H61_HxTaSrobVUbwkjXCU1QxwnrlWxqzohSdUc0wx1hyBhFhMAK245ayQyqLa-FYlT3jJ6Bj8fYss_jbPLUDi5r470KJs65xQ3hXApOcaEf_qPbOKdQhitK0oY0VBxUdVS6HCwnY9sxuUGlfYtRe_hEa7ft308U__4pde4G0__Rv09fwKcj2Dlv9s-ntaufX8jq-p_4X3RwlXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983929371</pqid></control><display><type>article</type><title>Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin</title><source>MEDLINE</source><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Jia ; Xue, Jin ; Ruan, Jingsong ; Zhao, Juan ; Tang, Beisha ; Duan, Ranhui</creator><creatorcontrib>Chen, Jia ; Xue, Jin ; Ruan, Jingsong ; Zhao, Juan ; Tang, Beisha ; Duan, Ranhui</creatorcontrib><description>ABSTRACT Mitochondrial kinase PTEN‐induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70‐interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase‐dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild‐type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.—Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. FASEB J. 31, 5234‐5245 (2017). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201700011R</identifier><identifier>PMID: 28778978</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Animals, Genetically Modified ; ATP ; CRISPR ; Deactivation ; Defects ; Degeneration ; Deoxyribonucleic acid ; DNA ; DNA, Mitochondrial - genetics ; Dopamine receptors ; Drosophila ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; E3 ubiquitin ligase ; Flies ; Heat shock proteins ; Homeostasis ; Hsc70 protein ; Hsp70 protein ; Hsp90 protein ; Inactivation ; Indentation ; Insects ; Kinases ; Life span ; Locomotion ; Locomotion - genetics ; Locomotion - physiology ; Male ; Membrane Potential, Mitochondrial - genetics ; Membrane Potential, Mitochondrial - physiology ; Microscopy, Electron, Transmission ; Mitochondrial DNA ; Movement disorders ; Muscles ; Mutants ; Neurodegeneration ; Neurodegenerative diseases ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Parkin protein ; Parkinson disease ; Parkinson's disease ; Pathogenesis ; Posture ; Protein folding ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; PTEN protein ; PTEN-induced putative kinase ; Thorax ; Ubiquitin ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>The FASEB journal, 2017-12, Vol.31 (12), p.5234-5245</ispartof><rights>FASEB</rights><rights>FASEB.</rights><rights>Copyright Federation of American Societies for Experimental Biology (FASEB) Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373R-4e252bb7c20b625da894652aa4b2c51b250eea2771a1fb3f85e04f647a53cd53</citedby><cites>FETCH-LOGICAL-c373R-4e252bb7c20b625da894652aa4b2c51b250eea2771a1fb3f85e04f647a53cd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201700011R$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201700011R$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28778978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Xue, Jin</creatorcontrib><creatorcontrib>Ruan, Jingsong</creatorcontrib><creatorcontrib>Zhao, Juan</creatorcontrib><creatorcontrib>Tang, Beisha</creatorcontrib><creatorcontrib>Duan, Ranhui</creatorcontrib><title>Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Mitochondrial kinase PTEN‐induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70‐interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase‐dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild‐type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.—Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. FASEB J. 31, 5234‐5245 (2017). www.fasebj.org</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>ATP</subject><subject>CRISPR</subject><subject>Deactivation</subject><subject>Defects</subject><subject>Degeneration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Dopamine receptors</subject><subject>Drosophila</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>E3 ubiquitin ligase</subject><subject>Flies</subject><subject>Heat shock proteins</subject><subject>Homeostasis</subject><subject>Hsc70 protein</subject><subject>Hsp70 protein</subject><subject>Hsp90 protein</subject><subject>Inactivation</subject><subject>Indentation</subject><subject>Insects</subject><subject>Kinases</subject><subject>Life span</subject><subject>Locomotion</subject><subject>Locomotion - genetics</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitochondrial DNA</subject><subject>Movement disorders</subject><subject>Muscles</subject><subject>Mutants</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Parkin protein</subject><subject>Parkinson disease</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>Posture</subject><subject>Protein folding</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>PTEN protein</subject><subject>PTEN-induced putative kinase</subject><subject>Thorax</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90clv1DAUB2ALUdGhcOSKLHHhktZLvEScYGBoq0qMSu-R49gdTx07tRON5r_HoymLOPT03uHTT28B4B1G5xg1_MJuzwnCAiGE8e0LsMCMoopLjl6CBZINqTin8hS8znl7MAjzV-CUSCFkI-QCjF9TzHHcOK_g8vJqDccUJ6OnDNW9ciFPcHBT1JsY-uSUh_0-2znoycUAuz1UpQv3sI-7QpNRA4wWrl14wNAFOKqkvDce7ty0gWuVHlx4A06s8tm8fapn4G717W55Wd38-H61_HxTaSrobVUbwkjXCU1QxwnrlWxqzohSdUc0wx1hyBhFhMAK245ayQyqLa-FYlT3jJ6Bj8fYss_jbPLUDi5r470KJs65xQ3hXApOcaEf_qPbOKdQhitK0oY0VBxUdVS6HCwnY9sxuUGlfYtRe_hEa7ft308U__4pde4G0__Rv09fwKcj2Dlv9s-ntaufX8jq-p_4X3RwlXs</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Chen, Jia</creator><creator>Xue, Jin</creator><creator>Ruan, Jingsong</creator><creator>Zhao, Juan</creator><creator>Tang, Beisha</creator><creator>Duan, Ranhui</creator><general>Federation of American Societies for Experimental Biology</general><general>Federation of American Societies for Experimental Biology (FASEB)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin</title><author>Chen, Jia ; Xue, Jin ; Ruan, Jingsong ; Zhao, Juan ; Tang, Beisha ; Duan, Ranhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373R-4e252bb7c20b625da894652aa4b2c51b250eea2771a1fb3f85e04f647a53cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>ATP</topic><topic>CRISPR</topic><topic>Deactivation</topic><topic>Defects</topic><topic>Degeneration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Dopamine receptors</topic><topic>Drosophila</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>E3 ubiquitin ligase</topic><topic>Flies</topic><topic>Heat shock proteins</topic><topic>Homeostasis</topic><topic>Hsc70 protein</topic><topic>Hsp70 protein</topic><topic>Hsp90 protein</topic><topic>Inactivation</topic><topic>Indentation</topic><topic>Insects</topic><topic>Kinases</topic><topic>Life span</topic><topic>Locomotion</topic><topic>Locomotion - genetics</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitochondrial DNA</topic><topic>Movement disorders</topic><topic>Muscles</topic><topic>Mutants</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Parkin protein</topic><topic>Parkinson disease</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>Posture</topic><topic>Protein folding</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>PTEN protein</topic><topic>PTEN-induced putative kinase</topic><topic>Thorax</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Xue, Jin</creatorcontrib><creatorcontrib>Ruan, Jingsong</creatorcontrib><creatorcontrib>Zhao, Juan</creatorcontrib><creatorcontrib>Tang, Beisha</creatorcontrib><creatorcontrib>Duan, Ranhui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jia</au><au>Xue, Jin</au><au>Ruan, Jingsong</au><au>Zhao, Juan</au><au>Tang, Beisha</au><au>Duan, Ranhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2017-12</date><risdate>2017</risdate><volume>31</volume><issue>12</issue><spage>5234</spage><epage>5245</epage><pages>5234-5245</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Mitochondrial kinase PTEN‐induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70‐interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase‐dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild‐type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.—Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. FASEB J. 31, 5234‐5245 (2017). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>28778978</pmid><doi>10.1096/fj.201700011R</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2017-12, Vol.31 (12), p.5234-5245
issn 0892-6638
1530-6860
language eng
recordid cdi_proquest_miscellaneous_1926687631
source MEDLINE; Wiley Journals; Alma/SFX Local Collection
subjects Animals
Animals, Genetically Modified
ATP
CRISPR
Deactivation
Defects
Degeneration
Deoxyribonucleic acid
DNA
DNA, Mitochondrial - genetics
Dopamine receptors
Drosophila
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
E3 ubiquitin ligase
Flies
Heat shock proteins
Homeostasis
Hsc70 protein
Hsp70 protein
Hsp90 protein
Inactivation
Indentation
Insects
Kinases
Life span
Locomotion
Locomotion - genetics
Locomotion - physiology
Male
Membrane Potential, Mitochondrial - genetics
Membrane Potential, Mitochondrial - physiology
Microscopy, Electron, Transmission
Mitochondrial DNA
Movement disorders
Muscles
Mutants
Neurodegeneration
Neurodegenerative diseases
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Parkin protein
Parkinson disease
Parkinson's disease
Pathogenesis
Posture
Protein folding
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
PTEN protein
PTEN-induced putative kinase
Thorax
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
title Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20CHIP%20protects%20against%20mitochondrial%20dysfunction%20by%20acting%20downstream%20of%20Pink1%20in%20parallel%20with%20Parkin&rft.jtitle=The%20FASEB%20journal&rft.au=Chen,%20Jia&rft.date=2017-12&rft.volume=31&rft.issue=12&rft.spage=5234&rft.epage=5245&rft.pages=5234-5245&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201700011R&rft_dat=%3Cproquest_cross%3E1983929371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983929371&rft_id=info:pmid/28778978&rfr_iscdi=true