Bacterial lipases: A review on purification and characterization

Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2018-01, Vol.132, p.23-34
Hauptverfasser: Javed, Saira, Azeem, Farrukh, Hussain, Sabir, Rasul, Ijaz, Siddique, Muhammad Hussnain, Riaz, Muhammad, Afzal, Muhammad, Kouser, Ambreen, Nadeem, Habibullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 23
container_title Progress in biophysics and molecular biology
container_volume 132
creator Javed, Saira
Azeem, Farrukh
Hussain, Sabir
Rasul, Ijaz
Siddique, Muhammad Hussnain
Riaz, Muhammad
Afzal, Muhammad
Kouser, Ambreen
Nadeem, Habibullah
description Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and chemical industries. Lipases are of plant, animal, and microbial origin, but microbial lipases are produced at industrial level and represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Phylogenetic analysis and comparison of residues around GxSxG motif provided an insight to the diversity among bacterial lipases. A variety of para-Nitrophenyl (p-NP) esters having C2 to C16 (p-NP acetate to p-NP palmitate) in their fatty acid side chain can be hydrolyzed by bacterial lipases. Large heterogeneity has been observed in molecular and catalytic characteristics of lipases including molecular mass; 19–96 kDa, Km; 0.0064–16.58 mM, Kcat; 0.1665–1.0 × 104 s−1 and Kcat/Km; 26.02–7377 s-1/mM. Optimal conditions of their working temperature and pH have been stated 15–70 °C and 5.0–10.8, respectively and are strongly associated with the type and growth conditions of bacteria. Surface hydrophobicity, enzyme activity, stability in organic solvents and at high temperature, proteolytic resistance and substrate tolerance are the properties of bacterial lipases that have been improved by engineering. Bacterial lipases have been extensively studied during last decade. However, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.
doi_str_mv 10.1016/j.pbiomolbio.2017.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1926684677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610717300809</els_id><sourcerecordid>1926684677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-59ca9981da8a90b41b6e0348bd54462f45ef7d836cf8ef202f5539b150374763</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmPwF1CPXFqSNE1STmwTX9IkLrtHaeqKTP0iaUHw68nogCOSZcvW-9ryg1BEcEIw4de7pC9s13R1yAnFRCQ4BGFHaE6kSGMiUnqM5hiLPOYEixk6836HMaZE8FM0o1IIJjIyR7crbQZwVtdRbXvtwd9Ey8jBm4X3qGujfnS2skYPNjS6LSPzot1k-fwenqOTStceLg51gbb3d9v1Y7x5fnhaLzexSQUb4iw3Os8lKbXUOS4YKTjglMmizBjjtGIZVKKUKTeVhIpiWmVZmhckw8EueLpAV9Pa3nWvI_hBNdYbqGvdQjd6RXLKuWRciCCVk9S4znsHleqdbbT7UASrPT61U3_41B6fwiEIC9bLw5WxaKD8Nf7wCoLVJIDwamDklDcWWgOldWAGVXb2_ytfCvqFqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926684677</pqid></control><display><type>article</type><title>Bacterial lipases: A review on purification and characterization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Javed, Saira ; Azeem, Farrukh ; Hussain, Sabir ; Rasul, Ijaz ; Siddique, Muhammad Hussnain ; Riaz, Muhammad ; Afzal, Muhammad ; Kouser, Ambreen ; Nadeem, Habibullah</creator><creatorcontrib>Javed, Saira ; Azeem, Farrukh ; Hussain, Sabir ; Rasul, Ijaz ; Siddique, Muhammad Hussnain ; Riaz, Muhammad ; Afzal, Muhammad ; Kouser, Ambreen ; Nadeem, Habibullah</creatorcontrib><description>Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and chemical industries. Lipases are of plant, animal, and microbial origin, but microbial lipases are produced at industrial level and represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Phylogenetic analysis and comparison of residues around GxSxG motif provided an insight to the diversity among bacterial lipases. A variety of para-Nitrophenyl (p-NP) esters having C2 to C16 (p-NP acetate to p-NP palmitate) in their fatty acid side chain can be hydrolyzed by bacterial lipases. Large heterogeneity has been observed in molecular and catalytic characteristics of lipases including molecular mass; 19–96 kDa, Km; 0.0064–16.58 mM, Kcat; 0.1665–1.0 × 104 s−1 and Kcat/Km; 26.02–7377 s-1/mM. Optimal conditions of their working temperature and pH have been stated 15–70 °C and 5.0–10.8, respectively and are strongly associated with the type and growth conditions of bacteria. Surface hydrophobicity, enzyme activity, stability in organic solvents and at high temperature, proteolytic resistance and substrate tolerance are the properties of bacterial lipases that have been improved by engineering. Bacterial lipases have been extensively studied during last decade. However, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2017.07.014</identifier><identifier>PMID: 28774751</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bacteria - enzymology ; Bacteria - metabolism ; Glycerol ester hydrolase ; Human health ; Humans ; Kinetics ; Lipase - biosynthesis ; Lipase - genetics ; Lipase - isolation &amp; purification ; Lipase - metabolism ; Phylogenetic ; Phylogeny ; Physiochemical ; Protein Engineering ; Triacylglycerol acylhydrolase</subject><ispartof>Progress in biophysics and molecular biology, 2018-01, Vol.132, p.23-34</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-59ca9981da8a90b41b6e0348bd54462f45ef7d836cf8ef202f5539b150374763</citedby><cites>FETCH-LOGICAL-c374t-59ca9981da8a90b41b6e0348bd54462f45ef7d836cf8ef202f5539b150374763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610717300809$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28774751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Javed, Saira</creatorcontrib><creatorcontrib>Azeem, Farrukh</creatorcontrib><creatorcontrib>Hussain, Sabir</creatorcontrib><creatorcontrib>Rasul, Ijaz</creatorcontrib><creatorcontrib>Siddique, Muhammad Hussnain</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><creatorcontrib>Afzal, Muhammad</creatorcontrib><creatorcontrib>Kouser, Ambreen</creatorcontrib><creatorcontrib>Nadeem, Habibullah</creatorcontrib><title>Bacterial lipases: A review on purification and characterization</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and chemical industries. Lipases are of plant, animal, and microbial origin, but microbial lipases are produced at industrial level and represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Phylogenetic analysis and comparison of residues around GxSxG motif provided an insight to the diversity among bacterial lipases. A variety of para-Nitrophenyl (p-NP) esters having C2 to C16 (p-NP acetate to p-NP palmitate) in their fatty acid side chain can be hydrolyzed by bacterial lipases. Large heterogeneity has been observed in molecular and catalytic characteristics of lipases including molecular mass; 19–96 kDa, Km; 0.0064–16.58 mM, Kcat; 0.1665–1.0 × 104 s−1 and Kcat/Km; 26.02–7377 s-1/mM. Optimal conditions of their working temperature and pH have been stated 15–70 °C and 5.0–10.8, respectively and are strongly associated with the type and growth conditions of bacteria. Surface hydrophobicity, enzyme activity, stability in organic solvents and at high temperature, proteolytic resistance and substrate tolerance are the properties of bacterial lipases that have been improved by engineering. Bacterial lipases have been extensively studied during last decade. However, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.</description><subject>Animals</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - metabolism</subject><subject>Glycerol ester hydrolase</subject><subject>Human health</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lipase - biosynthesis</subject><subject>Lipase - genetics</subject><subject>Lipase - isolation &amp; purification</subject><subject>Lipase - metabolism</subject><subject>Phylogenetic</subject><subject>Phylogeny</subject><subject>Physiochemical</subject><subject>Protein Engineering</subject><subject>Triacylglycerol acylhydrolase</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwzAMhiMEYmPwF1CPXFqSNE1STmwTX9IkLrtHaeqKTP0iaUHw68nogCOSZcvW-9ryg1BEcEIw4de7pC9s13R1yAnFRCQ4BGFHaE6kSGMiUnqM5hiLPOYEixk6836HMaZE8FM0o1IIJjIyR7crbQZwVtdRbXvtwd9Ey8jBm4X3qGujfnS2skYPNjS6LSPzot1k-fwenqOTStceLg51gbb3d9v1Y7x5fnhaLzexSQUb4iw3Os8lKbXUOS4YKTjglMmizBjjtGIZVKKUKTeVhIpiWmVZmhckw8EueLpAV9Pa3nWvI_hBNdYbqGvdQjd6RXLKuWRciCCVk9S4znsHleqdbbT7UASrPT61U3_41B6fwiEIC9bLw5WxaKD8Nf7wCoLVJIDwamDklDcWWgOldWAGVXb2_ytfCvqFqw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Javed, Saira</creator><creator>Azeem, Farrukh</creator><creator>Hussain, Sabir</creator><creator>Rasul, Ijaz</creator><creator>Siddique, Muhammad Hussnain</creator><creator>Riaz, Muhammad</creator><creator>Afzal, Muhammad</creator><creator>Kouser, Ambreen</creator><creator>Nadeem, Habibullah</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Bacterial lipases: A review on purification and characterization</title><author>Javed, Saira ; Azeem, Farrukh ; Hussain, Sabir ; Rasul, Ijaz ; Siddique, Muhammad Hussnain ; Riaz, Muhammad ; Afzal, Muhammad ; Kouser, Ambreen ; Nadeem, Habibullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-59ca9981da8a90b41b6e0348bd54462f45ef7d836cf8ef202f5539b150374763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - metabolism</topic><topic>Glycerol ester hydrolase</topic><topic>Human health</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lipase - biosynthesis</topic><topic>Lipase - genetics</topic><topic>Lipase - isolation &amp; purification</topic><topic>Lipase - metabolism</topic><topic>Phylogenetic</topic><topic>Phylogeny</topic><topic>Physiochemical</topic><topic>Protein Engineering</topic><topic>Triacylglycerol acylhydrolase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Saira</creatorcontrib><creatorcontrib>Azeem, Farrukh</creatorcontrib><creatorcontrib>Hussain, Sabir</creatorcontrib><creatorcontrib>Rasul, Ijaz</creatorcontrib><creatorcontrib>Siddique, Muhammad Hussnain</creatorcontrib><creatorcontrib>Riaz, Muhammad</creatorcontrib><creatorcontrib>Afzal, Muhammad</creatorcontrib><creatorcontrib>Kouser, Ambreen</creatorcontrib><creatorcontrib>Nadeem, Habibullah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Javed, Saira</au><au>Azeem, Farrukh</au><au>Hussain, Sabir</au><au>Rasul, Ijaz</au><au>Siddique, Muhammad Hussnain</au><au>Riaz, Muhammad</au><au>Afzal, Muhammad</au><au>Kouser, Ambreen</au><au>Nadeem, Habibullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial lipases: A review on purification and characterization</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2018-01</date><risdate>2018</risdate><volume>132</volume><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Lipase (E.C.3.1.1.3) belongs to the hydrolases and is also known as fat splitting, glycerol ester hydrolase or triacylglycerol acylhydrolase. Lipase catalyzes the hydrolysis of triglycerides converting them to glycerol and fatty acids in an oil-water interface. These are widely used in food, dairy, flavor, pharmaceuticals, biofuels, leather, cosmetics, detergent, and chemical industries. Lipases are of plant, animal, and microbial origin, but microbial lipases are produced at industrial level and represent the most widely used class of enzymes in biotechnological applications and organic chemistry. Phylogenetic analysis and comparison of residues around GxSxG motif provided an insight to the diversity among bacterial lipases. A variety of para-Nitrophenyl (p-NP) esters having C2 to C16 (p-NP acetate to p-NP palmitate) in their fatty acid side chain can be hydrolyzed by bacterial lipases. Large heterogeneity has been observed in molecular and catalytic characteristics of lipases including molecular mass; 19–96 kDa, Km; 0.0064–16.58 mM, Kcat; 0.1665–1.0 × 104 s−1 and Kcat/Km; 26.02–7377 s-1/mM. Optimal conditions of their working temperature and pH have been stated 15–70 °C and 5.0–10.8, respectively and are strongly associated with the type and growth conditions of bacteria. Surface hydrophobicity, enzyme activity, stability in organic solvents and at high temperature, proteolytic resistance and substrate tolerance are the properties of bacterial lipases that have been improved by engineering. Bacterial lipases have been extensively studied during last decade. However, their wider applications demand a detailed review on purification, catalytic characterization and applications of lipases.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28774751</pmid><doi>10.1016/j.pbiomolbio.2017.07.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2018-01, Vol.132, p.23-34
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_1926684677
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Bacteria - enzymology
Bacteria - metabolism
Glycerol ester hydrolase
Human health
Humans
Kinetics
Lipase - biosynthesis
Lipase - genetics
Lipase - isolation & purification
Lipase - metabolism
Phylogenetic
Phylogeny
Physiochemical
Protein Engineering
Triacylglycerol acylhydrolase
title Bacterial lipases: A review on purification and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20lipases:%20A%20review%20on%20purification%20and%20characterization&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Javed,%20Saira&rft.date=2018-01&rft.volume=132&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2017.07.014&rft_dat=%3Cproquest_cross%3E1926684677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926684677&rft_id=info:pmid/28774751&rft_els_id=S0079610717300809&rfr_iscdi=true