Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae

Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mutation research 2003-11, Vol.544 (2), p.179-193
Hauptverfasser: Brendel, Martin, Bonatto, Diego, Strauss, Martin, Revers, Luis Fernando, Pungartnik, Cristina, Saffi, Jenifer, Henriques, João Antonio Pegas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 179
container_title Mutation research
container_volume 544
creator Brendel, Martin
Bonatto, Diego
Strauss, Martin
Revers, Luis Fernando
Pungartnik, Cristina
Saffi, Jenifer
Henriques, João Antonio Pegas
description Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [ PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.
doi_str_mv 10.1016/j.mrrev.2003.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19259175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383574203001042</els_id><sourcerecordid>19259175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EouXxBUgoG9gl2LGdJgsWVSkPqaKIwtqaOOPiKo9it5X69yRtpe5YzWh0ZubqEHLDaMQoSx4WUeUcbqKYUh7RJKIsPSF9xtM0jBnPTnc9D-VAxD1y4f2C0phyRs9Jj4lECB7TPhl_NiUGjQk-ZtNgjjX6wNaBwyVY142f3odBARXMd9AMtP4B11Rb3YIa2_fWW8Arcmag9Hh9qJfk-3n8NXoNJ9OXt9FwEmqRxqsw421UyRjEIjc6L4DRPDUmAcyywmQJpHxgskJiWgAkmkMuUpYLGORtQ1HyS3K_v7t0ze8a_UpV1mssS6ixWXvFslhmbNCBfA9q13jv0KilsxW4rWJUdfbUQu3sqc6eoolq7bVbt4fz67zC4rhz0NUCdwcAvIbSOKi19UdOciml6N4_7jlsZWwsOuW1xVpjYR3qlSoa-2-QP7nNjbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19259175</pqid></control><display><type>article</type><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</creator><creatorcontrib>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</creatorcontrib><description>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [ PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</description><identifier>ISSN: 1383-5742</identifier><identifier>ISSN: 0027-5107</identifier><identifier>EISSN: 1388-2139</identifier><identifier>DOI: 10.1016/j.mrrev.2003.06.018</identifier><identifier>PMID: 14644320</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Biological and medical sciences ; COX11 gene ; Cross-link repair ; Cytochrome c oxidase ; DNA Damage - genetics ; DNA Damage - radiation effects ; DNA repair ; DNA, Fungal - genetics ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - radiation effects ; ERG3 gene ; Ergosterol ; Fundamental and applied biological sciences. Psychology ; MEC3 gene ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis ; Mutagenesis. Repair ; Mutagens - pharmacokinetics ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - radiation effects ; Oxidative stress ; pre-mRNA splicing ; PRP19 gene ; PSO1 gene ; PSO2 gene ; PSO3 gene ; PSO4 gene ; PSO6 gene ; PSO7 gene ; PSO8 gene ; PSO9 gene ; psoralen ; Psoralen sensitivity ; RAD6 gene ; REV3 gene ; Ribonucleotide reductase ; RNR4 gene ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - radiation effects ; SNM1 gene ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - radiation effects ; Ultraviolet Rays ; Yeast</subject><ispartof>Mutation research, 2003-11, Vol.544 (2), p.179-193</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</citedby><cites>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1383574203001042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15355545$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14644320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brendel, Martin</creatorcontrib><creatorcontrib>Bonatto, Diego</creatorcontrib><creatorcontrib>Strauss, Martin</creatorcontrib><creatorcontrib>Revers, Luis Fernando</creatorcontrib><creatorcontrib>Pungartnik, Cristina</creatorcontrib><creatorcontrib>Saffi, Jenifer</creatorcontrib><creatorcontrib>Henriques, João Antonio Pegas</creatorcontrib><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><title>Mutation research</title><addtitle>Mutat Res</addtitle><description>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [ PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</description><subject>Biological and medical sciences</subject><subject>COX11 gene</subject><subject>Cross-link repair</subject><subject>Cytochrome c oxidase</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - radiation effects</subject><subject>DNA repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - radiation effects</subject><subject>ERG3 gene</subject><subject>Ergosterol</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>MEC3 gene</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis. Repair</subject><subject>Mutagens - pharmacokinetics</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - radiation effects</subject><subject>Oxidative stress</subject><subject>pre-mRNA splicing</subject><subject>PRP19 gene</subject><subject>PSO1 gene</subject><subject>PSO2 gene</subject><subject>PSO3 gene</subject><subject>PSO4 gene</subject><subject>PSO6 gene</subject><subject>PSO7 gene</subject><subject>PSO8 gene</subject><subject>PSO9 gene</subject><subject>psoralen</subject><subject>Psoralen sensitivity</subject><subject>RAD6 gene</subject><subject>REV3 gene</subject><subject>Ribonucleotide reductase</subject><subject>RNR4 gene</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - radiation effects</subject><subject>SNM1 gene</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><issn>1383-5742</issn><issn>0027-5107</issn><issn>1388-2139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EouXxBUgoG9gl2LGdJgsWVSkPqaKIwtqaOOPiKo9it5X69yRtpe5YzWh0ZubqEHLDaMQoSx4WUeUcbqKYUh7RJKIsPSF9xtM0jBnPTnc9D-VAxD1y4f2C0phyRs9Jj4lECB7TPhl_NiUGjQk-ZtNgjjX6wNaBwyVY142f3odBARXMd9AMtP4B11Rb3YIa2_fWW8Arcmag9Hh9qJfk-3n8NXoNJ9OXt9FwEmqRxqsw421UyRjEIjc6L4DRPDUmAcyywmQJpHxgskJiWgAkmkMuUpYLGORtQ1HyS3K_v7t0ze8a_UpV1mssS6ixWXvFslhmbNCBfA9q13jv0KilsxW4rWJUdfbUQu3sqc6eoolq7bVbt4fz67zC4rhz0NUCdwcAvIbSOKi19UdOciml6N4_7jlsZWwsOuW1xVpjYR3qlSoa-2-QP7nNjbs</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Brendel, Martin</creator><creator>Bonatto, Diego</creator><creator>Strauss, Martin</creator><creator>Revers, Luis Fernando</creator><creator>Pungartnik, Cristina</creator><creator>Saffi, Jenifer</creator><creator>Henriques, João Antonio Pegas</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20031101</creationdate><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><author>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>COX11 gene</topic><topic>Cross-link repair</topic><topic>Cytochrome c oxidase</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - radiation effects</topic><topic>DNA repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - radiation effects</topic><topic>ERG3 gene</topic><topic>Ergosterol</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>MEC3 gene</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis. Repair</topic><topic>Mutagens - pharmacokinetics</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - radiation effects</topic><topic>Oxidative stress</topic><topic>pre-mRNA splicing</topic><topic>PRP19 gene</topic><topic>PSO1 gene</topic><topic>PSO2 gene</topic><topic>PSO3 gene</topic><topic>PSO4 gene</topic><topic>PSO6 gene</topic><topic>PSO7 gene</topic><topic>PSO8 gene</topic><topic>PSO9 gene</topic><topic>psoralen</topic><topic>Psoralen sensitivity</topic><topic>RAD6 gene</topic><topic>REV3 gene</topic><topic>Ribonucleotide reductase</topic><topic>RNR4 gene</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - radiation effects</topic><topic>SNM1 gene</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brendel, Martin</creatorcontrib><creatorcontrib>Bonatto, Diego</creatorcontrib><creatorcontrib>Strauss, Martin</creatorcontrib><creatorcontrib>Revers, Luis Fernando</creatorcontrib><creatorcontrib>Pungartnik, Cristina</creatorcontrib><creatorcontrib>Saffi, Jenifer</creatorcontrib><creatorcontrib>Henriques, João Antonio Pegas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Mutation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brendel, Martin</au><au>Bonatto, Diego</au><au>Strauss, Martin</au><au>Revers, Luis Fernando</au><au>Pungartnik, Cristina</au><au>Saffi, Jenifer</au><au>Henriques, João Antonio Pegas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</atitle><jtitle>Mutation research</jtitle><addtitle>Mutat Res</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>544</volume><issue>2</issue><spage>179</spage><epage>193</epage><pages>179-193</pages><issn>1383-5742</issn><issn>0027-5107</issn><eissn>1388-2139</eissn><abstract>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [ PSO1/REV3, PSO8/RAD6, PSO9/MEC3] were allelic to already known repair genes, whereas three, PSO2/SNM1, PSO3/RNR4, and PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in S. cerevisiae. Gene PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene, PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes, PSO6/ERG3 and PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>14644320</pmid><doi>10.1016/j.mrrev.2003.06.018</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-5742
ispartof Mutation research, 2003-11, Vol.544 (2), p.179-193
issn 1383-5742
0027-5107
1388-2139
language eng
recordid cdi_proquest_miscellaneous_19259175
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
COX11 gene
Cross-link repair
Cytochrome c oxidase
DNA Damage - genetics
DNA Damage - radiation effects
DNA repair
DNA, Fungal - genetics
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - radiation effects
ERG3 gene
Ergosterol
Fundamental and applied biological sciences. Psychology
MEC3 gene
Molecular and cellular biology
Molecular genetics
Mutagenesis
Mutagenesis. Repair
Mutagens - pharmacokinetics
Nucleotidyltransferases - genetics
Nucleotidyltransferases - radiation effects
Oxidative stress
pre-mRNA splicing
PRP19 gene
PSO1 gene
PSO2 gene
PSO3 gene
PSO4 gene
PSO6 gene
PSO7 gene
PSO8 gene
PSO9 gene
psoralen
Psoralen sensitivity
RAD6 gene
REV3 gene
Ribonucleotide reductase
RNR4 gene
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - radiation effects
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - radiation effects
SNM1 gene
Ubiquitin-Conjugating Enzymes - genetics
Ubiquitin-Conjugating Enzymes - radiation effects
Ultraviolet Rays
Yeast
title Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20PSO%20genes%20in%20repair%20of%20DNA%20damage%20of%20Saccharomyces%20cerevisiae&rft.jtitle=Mutation%20research&rft.au=Brendel,%20Martin&rft.date=2003-11-01&rft.volume=544&rft.issue=2&rft.spage=179&rft.epage=193&rft.pages=179-193&rft.issn=1383-5742&rft.eissn=1388-2139&rft_id=info:doi/10.1016/j.mrrev.2003.06.018&rft_dat=%3Cproquest_cross%3E19259175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19259175&rft_id=info:pmid/14644320&rft_els_id=S1383574203001042&rfr_iscdi=true