Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae
Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with r...
Gespeichert in:
Veröffentlicht in: | Mutation research 2003-11, Vol.544 (2), p.179-193 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Mutation research |
container_volume | 544 |
creator | Brendel, Martin Bonatto, Diego Strauss, Martin Revers, Luis Fernando Pungartnik, Cristina Saffi, Jenifer Henriques, João Antonio Pegas |
description | Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote
Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named
pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [
PSO1/REV3,
PSO8/RAD6,
PSO9/MEC3] were allelic to already known repair genes, whereas three,
PSO2/SNM1,
PSO3/RNR4, and
PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in
S. cerevisiae. Gene
PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in
pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene,
PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes,
PSO6/ERG3 and
PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens. |
doi_str_mv | 10.1016/j.mrrev.2003.06.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19259175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383574203001042</els_id><sourcerecordid>19259175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EouXxBUgoG9gl2LGdJgsWVSkPqaKIwtqaOOPiKo9it5X69yRtpe5YzWh0ZubqEHLDaMQoSx4WUeUcbqKYUh7RJKIsPSF9xtM0jBnPTnc9D-VAxD1y4f2C0phyRs9Jj4lECB7TPhl_NiUGjQk-ZtNgjjX6wNaBwyVY142f3odBARXMd9AMtP4B11Rb3YIa2_fWW8Arcmag9Hh9qJfk-3n8NXoNJ9OXt9FwEmqRxqsw421UyRjEIjc6L4DRPDUmAcyywmQJpHxgskJiWgAkmkMuUpYLGORtQ1HyS3K_v7t0ze8a_UpV1mssS6ixWXvFslhmbNCBfA9q13jv0KilsxW4rWJUdfbUQu3sqc6eoolq7bVbt4fz67zC4rhz0NUCdwcAvIbSOKi19UdOciml6N4_7jlsZWwsOuW1xVpjYR3qlSoa-2-QP7nNjbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19259175</pqid></control><display><type>article</type><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</creator><creatorcontrib>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</creatorcontrib><description>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote
Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named
pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [
PSO1/REV3,
PSO8/RAD6,
PSO9/MEC3] were allelic to already known repair genes, whereas three,
PSO2/SNM1,
PSO3/RNR4, and
PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in
S. cerevisiae. Gene
PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in
pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene,
PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes,
PSO6/ERG3 and
PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</description><identifier>ISSN: 1383-5742</identifier><identifier>ISSN: 0027-5107</identifier><identifier>EISSN: 1388-2139</identifier><identifier>DOI: 10.1016/j.mrrev.2003.06.018</identifier><identifier>PMID: 14644320</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Biological and medical sciences ; COX11 gene ; Cross-link repair ; Cytochrome c oxidase ; DNA Damage - genetics ; DNA Damage - radiation effects ; DNA repair ; DNA, Fungal - genetics ; DNA-Directed DNA Polymerase - genetics ; DNA-Directed DNA Polymerase - radiation effects ; ERG3 gene ; Ergosterol ; Fundamental and applied biological sciences. Psychology ; MEC3 gene ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis ; Mutagenesis. Repair ; Mutagens - pharmacokinetics ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - radiation effects ; Oxidative stress ; pre-mRNA splicing ; PRP19 gene ; PSO1 gene ; PSO2 gene ; PSO3 gene ; PSO4 gene ; PSO6 gene ; PSO7 gene ; PSO8 gene ; PSO9 gene ; psoralen ; Psoralen sensitivity ; RAD6 gene ; REV3 gene ; Ribonucleotide reductase ; RNR4 gene ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - radiation effects ; SNM1 gene ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - radiation effects ; Ultraviolet Rays ; Yeast</subject><ispartof>Mutation research, 2003-11, Vol.544 (2), p.179-193</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</citedby><cites>FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1383574203001042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15355545$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14644320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brendel, Martin</creatorcontrib><creatorcontrib>Bonatto, Diego</creatorcontrib><creatorcontrib>Strauss, Martin</creatorcontrib><creatorcontrib>Revers, Luis Fernando</creatorcontrib><creatorcontrib>Pungartnik, Cristina</creatorcontrib><creatorcontrib>Saffi, Jenifer</creatorcontrib><creatorcontrib>Henriques, João Antonio Pegas</creatorcontrib><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><title>Mutation research</title><addtitle>Mutat Res</addtitle><description>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote
Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named
pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [
PSO1/REV3,
PSO8/RAD6,
PSO9/MEC3] were allelic to already known repair genes, whereas three,
PSO2/SNM1,
PSO3/RNR4, and
PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in
S. cerevisiae. Gene
PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in
pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene,
PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes,
PSO6/ERG3 and
PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</description><subject>Biological and medical sciences</subject><subject>COX11 gene</subject><subject>Cross-link repair</subject><subject>Cytochrome c oxidase</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - radiation effects</subject><subject>DNA repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>DNA-Directed DNA Polymerase - radiation effects</subject><subject>ERG3 gene</subject><subject>Ergosterol</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>MEC3 gene</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis. Repair</subject><subject>Mutagens - pharmacokinetics</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - radiation effects</subject><subject>Oxidative stress</subject><subject>pre-mRNA splicing</subject><subject>PRP19 gene</subject><subject>PSO1 gene</subject><subject>PSO2 gene</subject><subject>PSO3 gene</subject><subject>PSO4 gene</subject><subject>PSO6 gene</subject><subject>PSO7 gene</subject><subject>PSO8 gene</subject><subject>PSO9 gene</subject><subject>psoralen</subject><subject>Psoralen sensitivity</subject><subject>RAD6 gene</subject><subject>REV3 gene</subject><subject>Ribonucleotide reductase</subject><subject>RNR4 gene</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - radiation effects</subject><subject>SNM1 gene</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><issn>1383-5742</issn><issn>0027-5107</issn><issn>1388-2139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EouXxBUgoG9gl2LGdJgsWVSkPqaKIwtqaOOPiKo9it5X69yRtpe5YzWh0ZubqEHLDaMQoSx4WUeUcbqKYUh7RJKIsPSF9xtM0jBnPTnc9D-VAxD1y4f2C0phyRs9Jj4lECB7TPhl_NiUGjQk-ZtNgjjX6wNaBwyVY142f3odBARXMd9AMtP4B11Rb3YIa2_fWW8Arcmag9Hh9qJfk-3n8NXoNJ9OXt9FwEmqRxqsw421UyRjEIjc6L4DRPDUmAcyywmQJpHxgskJiWgAkmkMuUpYLGORtQ1HyS3K_v7t0ze8a_UpV1mssS6ixWXvFslhmbNCBfA9q13jv0KilsxW4rWJUdfbUQu3sqc6eoolq7bVbt4fz67zC4rhz0NUCdwcAvIbSOKi19UdOciml6N4_7jlsZWwsOuW1xVpjYR3qlSoa-2-QP7nNjbs</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Brendel, Martin</creator><creator>Bonatto, Diego</creator><creator>Strauss, Martin</creator><creator>Revers, Luis Fernando</creator><creator>Pungartnik, Cristina</creator><creator>Saffi, Jenifer</creator><creator>Henriques, João Antonio Pegas</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20031101</creationdate><title>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</title><author>Brendel, Martin ; Bonatto, Diego ; Strauss, Martin ; Revers, Luis Fernando ; Pungartnik, Cristina ; Saffi, Jenifer ; Henriques, João Antonio Pegas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-93003511a24bfcbda10b8ff6ae99df96a837f9d5e8daa6c3ab481b4a7bb480e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>COX11 gene</topic><topic>Cross-link repair</topic><topic>Cytochrome c oxidase</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - radiation effects</topic><topic>DNA repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>DNA-Directed DNA Polymerase - radiation effects</topic><topic>ERG3 gene</topic><topic>Ergosterol</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>MEC3 gene</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis. Repair</topic><topic>Mutagens - pharmacokinetics</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - radiation effects</topic><topic>Oxidative stress</topic><topic>pre-mRNA splicing</topic><topic>PRP19 gene</topic><topic>PSO1 gene</topic><topic>PSO2 gene</topic><topic>PSO3 gene</topic><topic>PSO4 gene</topic><topic>PSO6 gene</topic><topic>PSO7 gene</topic><topic>PSO8 gene</topic><topic>PSO9 gene</topic><topic>psoralen</topic><topic>Psoralen sensitivity</topic><topic>RAD6 gene</topic><topic>REV3 gene</topic><topic>Ribonucleotide reductase</topic><topic>RNR4 gene</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - radiation effects</topic><topic>SNM1 gene</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brendel, Martin</creatorcontrib><creatorcontrib>Bonatto, Diego</creatorcontrib><creatorcontrib>Strauss, Martin</creatorcontrib><creatorcontrib>Revers, Luis Fernando</creatorcontrib><creatorcontrib>Pungartnik, Cristina</creatorcontrib><creatorcontrib>Saffi, Jenifer</creatorcontrib><creatorcontrib>Henriques, João Antonio Pegas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Mutation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brendel, Martin</au><au>Bonatto, Diego</au><au>Strauss, Martin</au><au>Revers, Luis Fernando</au><au>Pungartnik, Cristina</au><au>Saffi, Jenifer</au><au>Henriques, João Antonio Pegas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae</atitle><jtitle>Mutation research</jtitle><addtitle>Mutat Res</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>544</volume><issue>2</issue><spage>179</spage><epage>193</epage><pages>179-193</pages><issn>1383-5742</issn><issn>0027-5107</issn><eissn>1388-2139</eissn><abstract>Photoactivated psoralens used in treatment of skin diseases like Psoriasis and Vitiligo cause DNA damage, the repair of which may lead to mutations and thus to higher risk to have skin cancer. The simple eukaryote
Saccharomyces cerevisiae was chosen to investigate the cells’ genetic endowment with repair mechanisms for this type of DNA damage and to study the genetic consequences of such repair. Genetic studies on yeast mutants sensitive to photoactivated psoralens, named
pso mutants, showed their allocation to 10 distinct loci. Cloning and molecular characterization allowed their grouping into three functional classes: (I) the largest group comprises seven PSO genes that are either generally or specifically involved in error-prone DNA repair and thus affect induced mutability and recombination; (II) one PSO gene that represents error-free excision repair, and (III) two PSO genes encoding proteins not influencing DNA repair but physiological processes unrelated to nucleic acid metabolism. Of the seven DNA repair genes involved in induced mutagenesis three PSO loci [
PSO1/REV3,
PSO8/RAD6,
PSO9/MEC3] were allelic to already known repair genes, whereas three,
PSO2/SNM1,
PSO3/RNR4, and
PSO4/PRP19 represent new genes involved in DNA repair and nucleic acid metabolism in
S. cerevisiae. Gene
PSO2 encodes a protein indispensable for repair of interstrand cross-link (ICL) that are produced in DNA by a variety of bi- and polyfunctional mutagens and that appears to be important for a likewise repair function in humans as well. In silico analysis predicts a putative endonucleolytic activity for Pso2p/Snm1p in removing hairpins generated as repair intermediates. The absence of induced mutation in
pso3/rnr4 mutants indicates an important role of this subunit of ribonucleotide reductase (RNR) in regulation of translesion polymerase ζ in error-prone repair. Prp19p/Pso4p influences efficiency of DNA repair via splicing of pre-mRNAs of intron-containing repair genes but also may function in the stability of the nuclear scaffold that might influence DNA repair capacity. The seventh gene,
PSO10 which controls an unknown step in induced mutagenesis is not yet cloned. Two genes,
PSO6/ERG3 and
PSO7/COX11, are responsible for structural elements of the membrane and for a functional respiratory chain (RC), respectively, and their function thus indirectly influences sensitivity to photoactivated psoralens.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>14644320</pmid><doi>10.1016/j.mrrev.2003.06.018</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-5742 |
ispartof | Mutation research, 2003-11, Vol.544 (2), p.179-193 |
issn | 1383-5742 0027-5107 1388-2139 |
language | eng |
recordid | cdi_proquest_miscellaneous_19259175 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences COX11 gene Cross-link repair Cytochrome c oxidase DNA Damage - genetics DNA Damage - radiation effects DNA repair DNA, Fungal - genetics DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - radiation effects ERG3 gene Ergosterol Fundamental and applied biological sciences. Psychology MEC3 gene Molecular and cellular biology Molecular genetics Mutagenesis Mutagenesis. Repair Mutagens - pharmacokinetics Nucleotidyltransferases - genetics Nucleotidyltransferases - radiation effects Oxidative stress pre-mRNA splicing PRP19 gene PSO1 gene PSO2 gene PSO3 gene PSO4 gene PSO6 gene PSO7 gene PSO8 gene PSO9 gene psoralen Psoralen sensitivity RAD6 gene REV3 gene Ribonucleotide reductase RNR4 gene Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - radiation effects Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - radiation effects SNM1 gene Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - radiation effects Ultraviolet Rays Yeast |
title | Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20PSO%20genes%20in%20repair%20of%20DNA%20damage%20of%20Saccharomyces%20cerevisiae&rft.jtitle=Mutation%20research&rft.au=Brendel,%20Martin&rft.date=2003-11-01&rft.volume=544&rft.issue=2&rft.spage=179&rft.epage=193&rft.pages=179-193&rft.issn=1383-5742&rft.eissn=1388-2139&rft_id=info:doi/10.1016/j.mrrev.2003.06.018&rft_dat=%3Cproquest_cross%3E19259175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19259175&rft_id=info:pmid/14644320&rft_els_id=S1383574203001042&rfr_iscdi=true |