High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole

A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D-A type copolymers, electron-releasing alkoxy substituents were at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2017-06, Vol.10 (6), p.1443-1455
Hauptverfasser: Ko, Seo-Jin, Hoang, Quoc Viet, Song, Chang Eun, Uddin, Mohammad Afsar, Lim, Eunhee, Park, Song Yi, Lee, Byoung Hoon, Song, Seyeong, Moon, Sang-Jin, Hwang, Sungu, Morin, Pierre-Olivier, Leclerc, Mario, Su, Gregory M, Chabinyc, Michael L, Woo, Han Young, Shin, Won Suk, Kim, Jin Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 6
container_start_page 1443
container_title Energy & environmental science
container_volume 10
creator Ko, Seo-Jin
Hoang, Quoc Viet
Song, Chang Eun
Uddin, Mohammad Afsar
Lim, Eunhee
Park, Song Yi
Lee, Byoung Hoon
Song, Seyeong
Moon, Sang-Jin
Hwang, Sungu
Morin, Pierre-Olivier
Leclerc, Mario
Su, Gregory M
Chabinyc, Michael L
Woo, Han Young
Shin, Won Suk
Kim, Jin Young
description A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D-A type copolymers, electron-releasing alkoxy substituents were attached to electron-deficient benzothiadiazole (A) and electron-withdrawing fluorine atoms (0-4F) were substituted onto a 1,4-bis(thiophen-2-yl)benzene unit (D). Intra- and/or interchain noncovalent Coulombic interactions were also incorporated into the polymer backbone to promote planarity and crystalline intermolecular packing. The resulting optical band gap and the valence level were tuned to 1.93-2.15 eV and -5.37 to -5.67 eV, respectively, and strong interchain organization was observed by differential scanning calorimetry, high-resolution transmission electron microscopy and grazing incidence X-ray scattering measurements. The number of fluorine atoms and their position significantly influenced the photophysical, morphological and optoelectronic properties of bulk heterojunctions (BHJs) with these polymers. BHJ photovoltaic devices showed a high power conversion efficiency (PCE) of up to 9.8% with an open-circuit voltage of 0.94-1.03 V. To our knowledge, this PCE is one of the highest values for fullerene-based single BHJ devices with WBG polymers having a band gap of over 1.90 eV. A tandem solar cell was also demonstrated successfully to show a PCE of 10.3% by combining a diketopyrrolopyrrole-based low band gap polymer.
doi_str_mv 10.1039/c6ee03051c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1925883391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925883391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8b42e6858bbae2f366d047371fd95ec751148b967f004ced71c0f4967a0cff613</originalsourceid><addsrcrecordid>eNqNkUFLxDAQhYMouK5e_AU5ilBNmjZpj1JWVxC86Lmk6WQbzSa1yapd_PF2Xb17mZk3fMxjeAidU3JFCSuvFQcgjORUHaAZFXmW5ILww7-Zl-kxOgnhhRCeElHO0NfSrLoEtDbKgFMj7jsf_bu3URqFFVgb8IeJ3VRawL6PRkmLG-lavJI97r0d1zCEaROgxd5hbTd-ME7GSfYduNGCg0TaV_85NuC2PnZGtkZuvYVTdKSlDXD22-fo-XbxVC2Th8e7--rmIVGMsZgUTZYCL_KiaSSkmnHekkwwQXVb5qBETmlWNCUXmpBMQSuoIjqbtCRKa07ZHF3s7_aDf9tAiPXahN1v0oHfhJqWaV4UjJX_QSlnxWQoJvRyj6rBhzCArvvBrOUw1pTUuzTqii8WP2lU7BsQrn-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916381147</pqid></control><display><type>article</type><title>High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ko, Seo-Jin ; Hoang, Quoc Viet ; Song, Chang Eun ; Uddin, Mohammad Afsar ; Lim, Eunhee ; Park, Song Yi ; Lee, Byoung Hoon ; Song, Seyeong ; Moon, Sang-Jin ; Hwang, Sungu ; Morin, Pierre-Olivier ; Leclerc, Mario ; Su, Gregory M ; Chabinyc, Michael L ; Woo, Han Young ; Shin, Won Suk ; Kim, Jin Young</creator><creatorcontrib>Ko, Seo-Jin ; Hoang, Quoc Viet ; Song, Chang Eun ; Uddin, Mohammad Afsar ; Lim, Eunhee ; Park, Song Yi ; Lee, Byoung Hoon ; Song, Seyeong ; Moon, Sang-Jin ; Hwang, Sungu ; Morin, Pierre-Olivier ; Leclerc, Mario ; Su, Gregory M ; Chabinyc, Michael L ; Woo, Han Young ; Shin, Won Suk ; Kim, Jin Young</creatorcontrib><description>A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D-A type copolymers, electron-releasing alkoxy substituents were attached to electron-deficient benzothiadiazole (A) and electron-withdrawing fluorine atoms (0-4F) were substituted onto a 1,4-bis(thiophen-2-yl)benzene unit (D). Intra- and/or interchain noncovalent Coulombic interactions were also incorporated into the polymer backbone to promote planarity and crystalline intermolecular packing. The resulting optical band gap and the valence level were tuned to 1.93-2.15 eV and -5.37 to -5.67 eV, respectively, and strong interchain organization was observed by differential scanning calorimetry, high-resolution transmission electron microscopy and grazing incidence X-ray scattering measurements. The number of fluorine atoms and their position significantly influenced the photophysical, morphological and optoelectronic properties of bulk heterojunctions (BHJs) with these polymers. BHJ photovoltaic devices showed a high power conversion efficiency (PCE) of up to 9.8% with an open-circuit voltage of 0.94-1.03 V. To our knowledge, this PCE is one of the highest values for fullerene-based single BHJ devices with WBG polymers having a band gap of over 1.90 eV. A tandem solar cell was also demonstrated successfully to show a PCE of 10.3% by combining a diketopyrrolopyrrole-based low band gap polymer.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c6ee03051c</identifier><language>eng</language><subject>Backbone ; Devices ; Electric potential ; Fluorine ; Photovoltaic cells ; Polymers ; Solar cells ; Synthesis (chemistry)</subject><ispartof>Energy &amp; environmental science, 2017-06, Vol.10 (6), p.1443-1455</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8b42e6858bbae2f366d047371fd95ec751148b967f004ced71c0f4967a0cff613</citedby><cites>FETCH-LOGICAL-c333t-8b42e6858bbae2f366d047371fd95ec751148b967f004ced71c0f4967a0cff613</cites><orcidid>0000-0001-6910-8755 ; 0000-0002-0451-8558 ; 0000-0003-4479-145X ; 0000-0001-7495-8041 ; 0000-0001-7151-519X ; 0000-0003-2458-9633 ; 0000-0003-4641-3508 ; 0000-0002-6595-4468 ; 0000-0002-0178-3989 ; 0000-0002-7362-6149 ; 0000-0002-3217-5513 ; 0000-0002-7933-1587 ; 0000-0002-8809-5870 ; 0000-0001-5650-7482 ; 0000-0002-8722-9312 ; 0000-0001-5800-3851 ; 0000-0001-5176-9838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ko, Seo-Jin</creatorcontrib><creatorcontrib>Hoang, Quoc Viet</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Uddin, Mohammad Afsar</creatorcontrib><creatorcontrib>Lim, Eunhee</creatorcontrib><creatorcontrib>Park, Song Yi</creatorcontrib><creatorcontrib>Lee, Byoung Hoon</creatorcontrib><creatorcontrib>Song, Seyeong</creatorcontrib><creatorcontrib>Moon, Sang-Jin</creatorcontrib><creatorcontrib>Hwang, Sungu</creatorcontrib><creatorcontrib>Morin, Pierre-Olivier</creatorcontrib><creatorcontrib>Leclerc, Mario</creatorcontrib><creatorcontrib>Su, Gregory M</creatorcontrib><creatorcontrib>Chabinyc, Michael L</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><title>High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole</title><title>Energy &amp; environmental science</title><description>A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D-A type copolymers, electron-releasing alkoxy substituents were attached to electron-deficient benzothiadiazole (A) and electron-withdrawing fluorine atoms (0-4F) were substituted onto a 1,4-bis(thiophen-2-yl)benzene unit (D). Intra- and/or interchain noncovalent Coulombic interactions were also incorporated into the polymer backbone to promote planarity and crystalline intermolecular packing. The resulting optical band gap and the valence level were tuned to 1.93-2.15 eV and -5.37 to -5.67 eV, respectively, and strong interchain organization was observed by differential scanning calorimetry, high-resolution transmission electron microscopy and grazing incidence X-ray scattering measurements. The number of fluorine atoms and their position significantly influenced the photophysical, morphological and optoelectronic properties of bulk heterojunctions (BHJs) with these polymers. BHJ photovoltaic devices showed a high power conversion efficiency (PCE) of up to 9.8% with an open-circuit voltage of 0.94-1.03 V. To our knowledge, this PCE is one of the highest values for fullerene-based single BHJ devices with WBG polymers having a band gap of over 1.90 eV. A tandem solar cell was also demonstrated successfully to show a PCE of 10.3% by combining a diketopyrrolopyrrole-based low band gap polymer.</description><subject>Backbone</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Fluorine</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><subject>Synthesis (chemistry)</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkUFLxDAQhYMouK5e_AU5ilBNmjZpj1JWVxC86Lmk6WQbzSa1yapd_PF2Xb17mZk3fMxjeAidU3JFCSuvFQcgjORUHaAZFXmW5ILww7-Zl-kxOgnhhRCeElHO0NfSrLoEtDbKgFMj7jsf_bu3URqFFVgb8IeJ3VRawL6PRkmLG-lavJI97r0d1zCEaROgxd5hbTd-ME7GSfYduNGCg0TaV_85NuC2PnZGtkZuvYVTdKSlDXD22-fo-XbxVC2Th8e7--rmIVGMsZgUTZYCL_KiaSSkmnHekkwwQXVb5qBETmlWNCUXmpBMQSuoIjqbtCRKa07ZHF3s7_aDf9tAiPXahN1v0oHfhJqWaV4UjJX_QSlnxWQoJvRyj6rBhzCArvvBrOUw1pTUuzTqii8WP2lU7BsQrn-C</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Ko, Seo-Jin</creator><creator>Hoang, Quoc Viet</creator><creator>Song, Chang Eun</creator><creator>Uddin, Mohammad Afsar</creator><creator>Lim, Eunhee</creator><creator>Park, Song Yi</creator><creator>Lee, Byoung Hoon</creator><creator>Song, Seyeong</creator><creator>Moon, Sang-Jin</creator><creator>Hwang, Sungu</creator><creator>Morin, Pierre-Olivier</creator><creator>Leclerc, Mario</creator><creator>Su, Gregory M</creator><creator>Chabinyc, Michael L</creator><creator>Woo, Han Young</creator><creator>Shin, Won Suk</creator><creator>Kim, Jin Young</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6910-8755</orcidid><orcidid>https://orcid.org/0000-0002-0451-8558</orcidid><orcidid>https://orcid.org/0000-0003-4479-145X</orcidid><orcidid>https://orcid.org/0000-0001-7495-8041</orcidid><orcidid>https://orcid.org/0000-0001-7151-519X</orcidid><orcidid>https://orcid.org/0000-0003-2458-9633</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-6595-4468</orcidid><orcidid>https://orcid.org/0000-0002-0178-3989</orcidid><orcidid>https://orcid.org/0000-0002-7362-6149</orcidid><orcidid>https://orcid.org/0000-0002-3217-5513</orcidid><orcidid>https://orcid.org/0000-0002-7933-1587</orcidid><orcidid>https://orcid.org/0000-0002-8809-5870</orcidid><orcidid>https://orcid.org/0000-0001-5650-7482</orcidid><orcidid>https://orcid.org/0000-0002-8722-9312</orcidid><orcidid>https://orcid.org/0000-0001-5800-3851</orcidid><orcidid>https://orcid.org/0000-0001-5176-9838</orcidid></search><sort><creationdate>20170601</creationdate><title>High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole</title><author>Ko, Seo-Jin ; Hoang, Quoc Viet ; Song, Chang Eun ; Uddin, Mohammad Afsar ; Lim, Eunhee ; Park, Song Yi ; Lee, Byoung Hoon ; Song, Seyeong ; Moon, Sang-Jin ; Hwang, Sungu ; Morin, Pierre-Olivier ; Leclerc, Mario ; Su, Gregory M ; Chabinyc, Michael L ; Woo, Han Young ; Shin, Won Suk ; Kim, Jin Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8b42e6858bbae2f366d047371fd95ec751148b967f004ced71c0f4967a0cff613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Backbone</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Fluorine</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Seo-Jin</creatorcontrib><creatorcontrib>Hoang, Quoc Viet</creatorcontrib><creatorcontrib>Song, Chang Eun</creatorcontrib><creatorcontrib>Uddin, Mohammad Afsar</creatorcontrib><creatorcontrib>Lim, Eunhee</creatorcontrib><creatorcontrib>Park, Song Yi</creatorcontrib><creatorcontrib>Lee, Byoung Hoon</creatorcontrib><creatorcontrib>Song, Seyeong</creatorcontrib><creatorcontrib>Moon, Sang-Jin</creatorcontrib><creatorcontrib>Hwang, Sungu</creatorcontrib><creatorcontrib>Morin, Pierre-Olivier</creatorcontrib><creatorcontrib>Leclerc, Mario</creatorcontrib><creatorcontrib>Su, Gregory M</creatorcontrib><creatorcontrib>Chabinyc, Michael L</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Shin, Won Suk</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Seo-Jin</au><au>Hoang, Quoc Viet</au><au>Song, Chang Eun</au><au>Uddin, Mohammad Afsar</au><au>Lim, Eunhee</au><au>Park, Song Yi</au><au>Lee, Byoung Hoon</au><au>Song, Seyeong</au><au>Moon, Sang-Jin</au><au>Hwang, Sungu</au><au>Morin, Pierre-Olivier</au><au>Leclerc, Mario</au><au>Su, Gregory M</au><au>Chabinyc, Michael L</au><au>Woo, Han Young</au><au>Shin, Won Suk</au><au>Kim, Jin Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>10</volume><issue>6</issue><spage>1443</spage><epage>1455</epage><pages>1443-1455</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D-A type copolymers, electron-releasing alkoxy substituents were attached to electron-deficient benzothiadiazole (A) and electron-withdrawing fluorine atoms (0-4F) were substituted onto a 1,4-bis(thiophen-2-yl)benzene unit (D). Intra- and/or interchain noncovalent Coulombic interactions were also incorporated into the polymer backbone to promote planarity and crystalline intermolecular packing. The resulting optical band gap and the valence level were tuned to 1.93-2.15 eV and -5.37 to -5.67 eV, respectively, and strong interchain organization was observed by differential scanning calorimetry, high-resolution transmission electron microscopy and grazing incidence X-ray scattering measurements. The number of fluorine atoms and their position significantly influenced the photophysical, morphological and optoelectronic properties of bulk heterojunctions (BHJs) with these polymers. BHJ photovoltaic devices showed a high power conversion efficiency (PCE) of up to 9.8% with an open-circuit voltage of 0.94-1.03 V. To our knowledge, this PCE is one of the highest values for fullerene-based single BHJ devices with WBG polymers having a band gap of over 1.90 eV. A tandem solar cell was also demonstrated successfully to show a PCE of 10.3% by combining a diketopyrrolopyrrole-based low band gap polymer.</abstract><doi>10.1039/c6ee03051c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6910-8755</orcidid><orcidid>https://orcid.org/0000-0002-0451-8558</orcidid><orcidid>https://orcid.org/0000-0003-4479-145X</orcidid><orcidid>https://orcid.org/0000-0001-7495-8041</orcidid><orcidid>https://orcid.org/0000-0001-7151-519X</orcidid><orcidid>https://orcid.org/0000-0003-2458-9633</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-6595-4468</orcidid><orcidid>https://orcid.org/0000-0002-0178-3989</orcidid><orcidid>https://orcid.org/0000-0002-7362-6149</orcidid><orcidid>https://orcid.org/0000-0002-3217-5513</orcidid><orcidid>https://orcid.org/0000-0002-7933-1587</orcidid><orcidid>https://orcid.org/0000-0002-8809-5870</orcidid><orcidid>https://orcid.org/0000-0001-5650-7482</orcidid><orcidid>https://orcid.org/0000-0002-8722-9312</orcidid><orcidid>https://orcid.org/0000-0001-5800-3851</orcidid><orcidid>https://orcid.org/0000-0001-5176-9838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2017-06, Vol.10 (6), p.1443-1455
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1925883391
source Royal Society Of Chemistry Journals 2008-
subjects Backbone
Devices
Electric potential
Fluorine
Photovoltaic cells
Polymers
Solar cells
Synthesis (chemistry)
title High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20photovoltaic%20cells%20with%20wide%20optical%20band%20gap%20polymers%20based%20on%20fluorinated%20phenylene-alkoxybenzothiadiazole&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Ko,%20Seo-Jin&rft.date=2017-06-01&rft.volume=10&rft.issue=6&rft.spage=1443&rft.epage=1455&rft.pages=1443-1455&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c6ee03051c&rft_dat=%3Cproquest_cross%3E1925883391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916381147&rft_id=info:pmid/&rfr_iscdi=true