A global brain state underlies C. elegans sleep behavior

How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-06, Vol.356 (6344), p.1247-1247
Hauptverfasser: Nichols, Annika L. A., Eichler, Tomáš, Latham, Richard, Zimmer, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 6344
container_start_page 1247
container_title Science (American Association for the Advancement of Science)
container_volume 356
creator Nichols, Annika L. A.
Eichler, Tomáš
Latham, Richard
Zimmer, Manuel
description How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.
doi_str_mv 10.1126/science.aam6851
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1925879135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399297</jstor_id><sourcerecordid>26399297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</originalsourceid><addsrcrecordid>eNqNkUtLw0AURgdRbK2uXSkDbtyknfdjKcUXFNzoOkySm5qSR51JBP-9UxoVXHU1i-_c7zL3IHRJyZxSphYhr6DNYe5co4ykR2hKiZWJZYQfoykhXCWGaDlBZyFsCImZ5adowowSjBs2ReYOr-suczXOvKtaHHrXAx7aAnxdQcDLOYYa1q4NONQAW5zBu_usOn-OTkpXB7gY3xl6e7h_XT4lq5fH5-XdKsmFFH0ildE2o85yzajRVDiREaclNYrEgGVGFBR4XjIH0kZGgBYuU1KVORSl4TN0u-_d-u5jgNCnTRVyqGvXQjeElFom4wrK5QEoVVxrKQ9CObeSxivN0M0_dNMNvo1_jpQW1iohdoWLPZX7LgQPZbr1VeP8V0pJulOVjqrSUVWcuB57h6yB4pf_cROBqz2wCX3n_3LFrWVW829pKpdl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974996445</pqid></control><display><type>article</type><title>A global brain state underlies C. elegans sleep behavior</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</creator><creatorcontrib>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</creatorcontrib><description>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6851</identifier><identifier>PMID: 28642382</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Activity patterns ; Aggregates ; Anatomy ; Animals ; Arousal ; Arousal - physiology ; Atmospheric models ; Behavior, Animal - physiology ; Behavioral genetics ; Brain ; Brain - physiology ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - physiology ; Calcium imaging ; Chemoreception ; Circuits ; Computation ; Computational neuroscience ; Control ; Convergence ; Cues ; Data processing ; Developmental Stages ; Down-regulation ; Dynamics ; EEG ; Electroencephalography ; Environment ; Fluorescence ; Genetics ; Head ; Information Processing ; Mammals ; Mutation ; Nematoda ; Nematodes ; Nerve Net - physiology ; Nervous system ; Networks ; Neural networks ; Neuroimaging ; Neurons ; Oxygen ; Oxygen - metabolism ; Population dynamics ; Receptors, Neuropeptide - genetics ; RESEARCH ARTICLE SUMMARY ; Scientific visualization ; Sensory neurons ; Sensory Receptor Cells - metabolism ; Signal Transduction ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Stimuli ; Switches ; Switching theory ; Trajectory analysis ; Wakefulness ; γ-Aminobutyric acid</subject><ispartof>Science (American Association for the Advancement of Science), 2017-06, Vol.356 (6344), p.1247-1247</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</citedby><cites>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</cites><orcidid>0000-0001-6869-7463 ; 0000-0002-0388-904X ; 0000-0002-8072-787X ; 0000-0003-0178-5148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399297$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399297$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28642382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Annika L. A.</creatorcontrib><creatorcontrib>Eichler, Tomáš</creatorcontrib><creatorcontrib>Latham, Richard</creatorcontrib><creatorcontrib>Zimmer, Manuel</creatorcontrib><title>A global brain state underlies C. elegans sleep behavior</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</description><subject>Activity patterns</subject><subject>Aggregates</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Arousal</subject><subject>Arousal - physiology</subject><subject>Atmospheric models</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral genetics</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calcium imaging</subject><subject>Chemoreception</subject><subject>Circuits</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Control</subject><subject>Convergence</subject><subject>Cues</subject><subject>Data processing</subject><subject>Developmental Stages</subject><subject>Down-regulation</subject><subject>Dynamics</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Environment</subject><subject>Fluorescence</subject><subject>Genetics</subject><subject>Head</subject><subject>Information Processing</subject><subject>Mammals</subject><subject>Mutation</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Population dynamics</subject><subject>Receptors, Neuropeptide - genetics</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Scientific visualization</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Signal Transduction</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Stimuli</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Trajectory analysis</subject><subject>Wakefulness</subject><subject>γ-Aminobutyric acid</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLw0AURgdRbK2uXSkDbtyknfdjKcUXFNzoOkySm5qSR51JBP-9UxoVXHU1i-_c7zL3IHRJyZxSphYhr6DNYe5co4ykR2hKiZWJZYQfoykhXCWGaDlBZyFsCImZ5adowowSjBs2ReYOr-suczXOvKtaHHrXAx7aAnxdQcDLOYYa1q4NONQAW5zBu_usOn-OTkpXB7gY3xl6e7h_XT4lq5fH5-XdKsmFFH0ildE2o85yzajRVDiREaclNYrEgGVGFBR4XjIH0kZGgBYuU1KVORSl4TN0u-_d-u5jgNCnTRVyqGvXQjeElFom4wrK5QEoVVxrKQ9CObeSxivN0M0_dNMNvo1_jpQW1iohdoWLPZX7LgQPZbr1VeP8V0pJulOVjqrSUVWcuB57h6yB4pf_cROBqz2wCX3n_3LFrWVW829pKpdl</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Nichols, Annika L. A.</creator><creator>Eichler, Tomáš</creator><creator>Latham, Richard</creator><creator>Zimmer, Manuel</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6869-7463</orcidid><orcidid>https://orcid.org/0000-0002-0388-904X</orcidid><orcidid>https://orcid.org/0000-0002-8072-787X</orcidid><orcidid>https://orcid.org/0000-0003-0178-5148</orcidid></search><sort><creationdate>20170623</creationdate><title>A global brain state underlies C. elegans sleep behavior</title><author>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity patterns</topic><topic>Aggregates</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Arousal</topic><topic>Arousal - physiology</topic><topic>Atmospheric models</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral genetics</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calcium imaging</topic><topic>Chemoreception</topic><topic>Circuits</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Control</topic><topic>Convergence</topic><topic>Cues</topic><topic>Data processing</topic><topic>Developmental Stages</topic><topic>Down-regulation</topic><topic>Dynamics</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Environment</topic><topic>Fluorescence</topic><topic>Genetics</topic><topic>Head</topic><topic>Information Processing</topic><topic>Mammals</topic><topic>Mutation</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Population dynamics</topic><topic>Receptors, Neuropeptide - genetics</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Scientific visualization</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Signal Transduction</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Stimuli</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Trajectory analysis</topic><topic>Wakefulness</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Annika L. A.</creatorcontrib><creatorcontrib>Eichler, Tomáš</creatorcontrib><creatorcontrib>Latham, Richard</creatorcontrib><creatorcontrib>Zimmer, Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Annika L. A.</au><au>Eichler, Tomáš</au><au>Latham, Richard</au><au>Zimmer, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global brain state underlies C. elegans sleep behavior</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-06-23</date><risdate>2017</risdate><volume>356</volume><issue>6344</issue><spage>1247</spage><epage>1247</epage><pages>1247-1247</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28642382</pmid><doi>10.1126/science.aam6851</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6869-7463</orcidid><orcidid>https://orcid.org/0000-0002-0388-904X</orcidid><orcidid>https://orcid.org/0000-0002-8072-787X</orcidid><orcidid>https://orcid.org/0000-0003-0178-5148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-06, Vol.356 (6344), p.1247-1247
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1925879135
source MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Activity patterns
Aggregates
Anatomy
Animals
Arousal
Arousal - physiology
Atmospheric models
Behavior, Animal - physiology
Behavioral genetics
Brain
Brain - physiology
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans - physiology
Calcium imaging
Chemoreception
Circuits
Computation
Computational neuroscience
Control
Convergence
Cues
Data processing
Developmental Stages
Down-regulation
Dynamics
EEG
Electroencephalography
Environment
Fluorescence
Genetics
Head
Information Processing
Mammals
Mutation
Nematoda
Nematodes
Nerve Net - physiology
Nervous system
Networks
Neural networks
Neuroimaging
Neurons
Oxygen
Oxygen - metabolism
Population dynamics
Receptors, Neuropeptide - genetics
RESEARCH ARTICLE SUMMARY
Scientific visualization
Sensory neurons
Sensory Receptor Cells - metabolism
Signal Transduction
Sleep
Sleep - physiology
Sleep and wakefulness
Stimuli
Switches
Switching theory
Trajectory analysis
Wakefulness
γ-Aminobutyric acid
title A global brain state underlies C. elegans sleep behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20brain%20state%20underlies%20C.%20elegans%20sleep%20behavior&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Nichols,%20Annika%20L.%20A.&rft.date=2017-06-23&rft.volume=356&rft.issue=6344&rft.spage=1247&rft.epage=1247&rft.pages=1247-1247&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6851&rft_dat=%3Cjstor_proqu%3E26399297%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974996445&rft_id=info:pmid/28642382&rft_jstor_id=26399297&rfr_iscdi=true