A global brain state underlies C. elegans sleep behavior
How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the brain is predisposed to global quiescence, charac...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-06, Vol.356 (6344), p.1247-1247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1247 |
---|---|
container_issue | 6344 |
container_start_page | 1247 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 356 |
creator | Nichols, Annika L. A. Eichler, Tomáš Latham, Richard Zimmer, Manuel |
description | How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the
brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits. |
doi_str_mv | 10.1126/science.aam6851 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1925879135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399297</jstor_id><sourcerecordid>26399297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</originalsourceid><addsrcrecordid>eNqNkUtLw0AURgdRbK2uXSkDbtyknfdjKcUXFNzoOkySm5qSR51JBP-9UxoVXHU1i-_c7zL3IHRJyZxSphYhr6DNYe5co4ykR2hKiZWJZYQfoykhXCWGaDlBZyFsCImZ5adowowSjBs2ReYOr-suczXOvKtaHHrXAx7aAnxdQcDLOYYa1q4NONQAW5zBu_usOn-OTkpXB7gY3xl6e7h_XT4lq5fH5-XdKsmFFH0ildE2o85yzajRVDiREaclNYrEgGVGFBR4XjIH0kZGgBYuU1KVORSl4TN0u-_d-u5jgNCnTRVyqGvXQjeElFom4wrK5QEoVVxrKQ9CObeSxivN0M0_dNMNvo1_jpQW1iohdoWLPZX7LgQPZbr1VeP8V0pJulOVjqrSUVWcuB57h6yB4pf_cROBqz2wCX3n_3LFrWVW829pKpdl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974996445</pqid></control><display><type>article</type><title>A global brain state underlies C. elegans sleep behavior</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</creator><creatorcontrib>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</creatorcontrib><description>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the
brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6851</identifier><identifier>PMID: 28642382</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Activity patterns ; Aggregates ; Anatomy ; Animals ; Arousal ; Arousal - physiology ; Atmospheric models ; Behavior, Animal - physiology ; Behavioral genetics ; Brain ; Brain - physiology ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - physiology ; Calcium imaging ; Chemoreception ; Circuits ; Computation ; Computational neuroscience ; Control ; Convergence ; Cues ; Data processing ; Developmental Stages ; Down-regulation ; Dynamics ; EEG ; Electroencephalography ; Environment ; Fluorescence ; Genetics ; Head ; Information Processing ; Mammals ; Mutation ; Nematoda ; Nematodes ; Nerve Net - physiology ; Nervous system ; Networks ; Neural networks ; Neuroimaging ; Neurons ; Oxygen ; Oxygen - metabolism ; Population dynamics ; Receptors, Neuropeptide - genetics ; RESEARCH ARTICLE SUMMARY ; Scientific visualization ; Sensory neurons ; Sensory Receptor Cells - metabolism ; Signal Transduction ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Stimuli ; Switches ; Switching theory ; Trajectory analysis ; Wakefulness ; γ-Aminobutyric acid</subject><ispartof>Science (American Association for the Advancement of Science), 2017-06, Vol.356 (6344), p.1247-1247</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</citedby><cites>FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</cites><orcidid>0000-0001-6869-7463 ; 0000-0002-0388-904X ; 0000-0002-8072-787X ; 0000-0003-0178-5148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399297$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399297$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28642382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nichols, Annika L. A.</creatorcontrib><creatorcontrib>Eichler, Tomáš</creatorcontrib><creatorcontrib>Latham, Richard</creatorcontrib><creatorcontrib>Zimmer, Manuel</creatorcontrib><title>A global brain state underlies C. elegans sleep behavior</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the
brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</description><subject>Activity patterns</subject><subject>Aggregates</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Arousal</subject><subject>Arousal - physiology</subject><subject>Atmospheric models</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral genetics</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calcium imaging</subject><subject>Chemoreception</subject><subject>Circuits</subject><subject>Computation</subject><subject>Computational neuroscience</subject><subject>Control</subject><subject>Convergence</subject><subject>Cues</subject><subject>Data processing</subject><subject>Developmental Stages</subject><subject>Down-regulation</subject><subject>Dynamics</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Environment</subject><subject>Fluorescence</subject><subject>Genetics</subject><subject>Head</subject><subject>Information Processing</subject><subject>Mammals</subject><subject>Mutation</subject><subject>Nematoda</subject><subject>Nematodes</subject><subject>Nerve Net - physiology</subject><subject>Nervous system</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Population dynamics</subject><subject>Receptors, Neuropeptide - genetics</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Scientific visualization</subject><subject>Sensory neurons</subject><subject>Sensory Receptor Cells - metabolism</subject><subject>Signal Transduction</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Stimuli</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Trajectory analysis</subject><subject>Wakefulness</subject><subject>γ-Aminobutyric acid</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLw0AURgdRbK2uXSkDbtyknfdjKcUXFNzoOkySm5qSR51JBP-9UxoVXHU1i-_c7zL3IHRJyZxSphYhr6DNYe5co4ykR2hKiZWJZYQfoykhXCWGaDlBZyFsCImZ5adowowSjBs2ReYOr-suczXOvKtaHHrXAx7aAnxdQcDLOYYa1q4NONQAW5zBu_usOn-OTkpXB7gY3xl6e7h_XT4lq5fH5-XdKsmFFH0ildE2o85yzajRVDiREaclNYrEgGVGFBR4XjIH0kZGgBYuU1KVORSl4TN0u-_d-u5jgNCnTRVyqGvXQjeElFom4wrK5QEoVVxrKQ9CObeSxivN0M0_dNMNvo1_jpQW1iohdoWLPZX7LgQPZbr1VeP8V0pJulOVjqrSUVWcuB57h6yB4pf_cROBqz2wCX3n_3LFrWVW829pKpdl</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Nichols, Annika L. A.</creator><creator>Eichler, Tomáš</creator><creator>Latham, Richard</creator><creator>Zimmer, Manuel</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6869-7463</orcidid><orcidid>https://orcid.org/0000-0002-0388-904X</orcidid><orcidid>https://orcid.org/0000-0002-8072-787X</orcidid><orcidid>https://orcid.org/0000-0003-0178-5148</orcidid></search><sort><creationdate>20170623</creationdate><title>A global brain state underlies C. elegans sleep behavior</title><author>Nichols, Annika L. A. ; Eichler, Tomáš ; Latham, Richard ; Zimmer, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-56879b1a937218714a4b0a75186079b2b84d1e3cf2ae597214e74ab656fcedf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity patterns</topic><topic>Aggregates</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Arousal</topic><topic>Arousal - physiology</topic><topic>Atmospheric models</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral genetics</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calcium imaging</topic><topic>Chemoreception</topic><topic>Circuits</topic><topic>Computation</topic><topic>Computational neuroscience</topic><topic>Control</topic><topic>Convergence</topic><topic>Cues</topic><topic>Data processing</topic><topic>Developmental Stages</topic><topic>Down-regulation</topic><topic>Dynamics</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Environment</topic><topic>Fluorescence</topic><topic>Genetics</topic><topic>Head</topic><topic>Information Processing</topic><topic>Mammals</topic><topic>Mutation</topic><topic>Nematoda</topic><topic>Nematodes</topic><topic>Nerve Net - physiology</topic><topic>Nervous system</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Population dynamics</topic><topic>Receptors, Neuropeptide - genetics</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Scientific visualization</topic><topic>Sensory neurons</topic><topic>Sensory Receptor Cells - metabolism</topic><topic>Signal Transduction</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Stimuli</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Trajectory analysis</topic><topic>Wakefulness</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nichols, Annika L. A.</creatorcontrib><creatorcontrib>Eichler, Tomáš</creatorcontrib><creatorcontrib>Latham, Richard</creatorcontrib><creatorcontrib>Zimmer, Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nichols, Annika L. A.</au><au>Eichler, Tomáš</au><au>Latham, Richard</au><au>Zimmer, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global brain state underlies C. elegans sleep behavior</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-06-23</date><risdate>2017</risdate><volume>356</volume><issue>6344</issue><spage>1247</spage><epage>1247</epage><pages>1247-1247</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>How the brain effectively switches between and maintains global states, such as sleep and wakefulness, is not yet understood. We used brainwide functional imaging at single-cell resolution to show that during the developmental stage of lethargus, the
brain is predisposed to global quiescence, characterized by systemic down-regulation of neuronal activity. Only a few specific neurons are exempt from this effect. In the absence of external arousing cues, this quiescent brain state arises by the convergence of neuronal activities toward a fixed-point attractor embedded in an otherwise dynamic neural state space. We observed efficient spontaneous and sensory-evoked exits from quiescence. Our data support the hypothesis that during global states such as sleep, neuronal networks are drawn to a baseline mode and can be effectively reactivated by signaling from arousing circuits.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28642382</pmid><doi>10.1126/science.aam6851</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6869-7463</orcidid><orcidid>https://orcid.org/0000-0002-0388-904X</orcidid><orcidid>https://orcid.org/0000-0002-8072-787X</orcidid><orcidid>https://orcid.org/0000-0003-0178-5148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-06, Vol.356 (6344), p.1247-1247 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1925879135 |
source | MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Activity patterns Aggregates Anatomy Animals Arousal Arousal - physiology Atmospheric models Behavior, Animal - physiology Behavioral genetics Brain Brain - physiology Caenorhabditis elegans Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans - physiology Calcium imaging Chemoreception Circuits Computation Computational neuroscience Control Convergence Cues Data processing Developmental Stages Down-regulation Dynamics EEG Electroencephalography Environment Fluorescence Genetics Head Information Processing Mammals Mutation Nematoda Nematodes Nerve Net - physiology Nervous system Networks Neural networks Neuroimaging Neurons Oxygen Oxygen - metabolism Population dynamics Receptors, Neuropeptide - genetics RESEARCH ARTICLE SUMMARY Scientific visualization Sensory neurons Sensory Receptor Cells - metabolism Signal Transduction Sleep Sleep - physiology Sleep and wakefulness Stimuli Switches Switching theory Trajectory analysis Wakefulness γ-Aminobutyric acid |
title | A global brain state underlies C. elegans sleep behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20brain%20state%20underlies%20C.%20elegans%20sleep%20behavior&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Nichols,%20Annika%20L.%20A.&rft.date=2017-06-23&rft.volume=356&rft.issue=6344&rft.spage=1247&rft.epage=1247&rft.pages=1247-1247&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6851&rft_dat=%3Cjstor_proqu%3E26399297%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974996445&rft_id=info:pmid/28642382&rft_jstor_id=26399297&rfr_iscdi=true |