Cation-Chloride Cotransporters Mediate Neural Computation in the Retina
The ability of directionally selective (DS) retinal ganglion cells to respond selectively to stimulus motion in one direction is a classic unresolved example of computation in a local neural circuit. Recent evidence indicates that DS responses occur first in the retina in the dendrites of starburst...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (26), p.16047-16052 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16052 |
---|---|
container_issue | 26 |
container_start_page | 16047 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Gavrikov, Konstantin E. Dmitriev, Andrey V. Keyser, Kent T. Mangel, Stuart C. |
description | The ability of directionally selective (DS) retinal ganglion cells to respond selectively to stimulus motion in one direction is a classic unresolved example of computation in a local neural circuit. Recent evidence indicates that DS responses occur first in the retina in the dendrites of starburst amacrine cells (interneurons presynaptic to the ganglion cells). We report that the directional responses of starburst-cell dendrites and DS ganglion cells are highly sensitive to the polarity of the transmembrane chloride gradient. Reducing the transmembrane chloride gradient by ion substitution or by blocking the K-Cl cotransporter resulted in the starburst cells responding equally to light moving in opposite directions. Conversely, increasing the chloride gradient by blocking the Na-K-Cl cotransporter eliminated responses to light moving in either direction. Moreover, in each case, blocking the chloride cotransporters or reducing the transmembrane chloride gradient eliminated the directional responses of DS ganglion cells in a manner opposite that of the starburst cells. These results indicate that chloride cotransporters play a key role in the generation of direction selectivity and that the directional responses of starburst cells and DS ganglion cells are exquisitely sensitive to the chloride equilibrium potential. The findings further suggest that the directional responses of DS ganglion cells are mediated in part by the directional release of γ-aminobutyric acid from starburst dendrites and that the asymmetric distribution of the two cotransporters along starburst-cell dendrites mediates direction selectivity. A model of direction selectivity in the retina that incorporates these and other findings is discussed. |
doi_str_mv | 10.1073/pnas.2637041100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19253560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3149128</jstor_id><sourcerecordid>3149128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-2f822842112c504a4095d4cd2fbd2e11b296c08dfa7c750a42fba26e16c251be3</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxC1ERZfCmQtCEQckDmnfc_wRH3pAEZRKBSQEZ8ubOGxWWTvYTlX-exx21QUuPfkwvxmN3xDyAuEcQVYXkzPxnIpKAkMEeERWCApLwRQ8JisAKsuaUXZKnsa4BQDFa3hCTpEJwYWSK3LVmDR4Vzab0Yehs0XjUzAuTj4kG2LxyXaDSbb4bOdgxqzupjn9sRSDK9LGFl9tGpx5Rk56M0b7_PCeke8f3n9rPpY3X66um3c3ZcupSCXta0pzI0TacmCG5UYdazvarztqEddUiRbqrjeylRwMy4KhwqJoKce1rc7I5T53mtc727XW5bqjnsKwM-GX9mbQ_ypu2Ogf_lZXIIWC7H9z8Af_c7Yx6d0QWzuOxlk_Ry2R1ZLX_EEQFeUVF0vi6__ArZ-Dy0fQFLBSquJL2sUeaoOPMdj-vjGCXpbUy5L6uGR2vPr7o0f-MF0G3h6AxXmMg5yiUQCTup_HMdm7lNniATYjL_fINiYf7pkKmUJaV78BAPG74g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399355</pqid></control><display><type>article</type><title>Cation-Chloride Cotransporters Mediate Neural Computation in the Retina</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gavrikov, Konstantin E. ; Dmitriev, Andrey V. ; Keyser, Kent T. ; Mangel, Stuart C.</creator><creatorcontrib>Gavrikov, Konstantin E. ; Dmitriev, Andrey V. ; Keyser, Kent T. ; Mangel, Stuart C.</creatorcontrib><description>The ability of directionally selective (DS) retinal ganglion cells to respond selectively to stimulus motion in one direction is a classic unresolved example of computation in a local neural circuit. Recent evidence indicates that DS responses occur first in the retina in the dendrites of starburst amacrine cells (interneurons presynaptic to the ganglion cells). We report that the directional responses of starburst-cell dendrites and DS ganglion cells are highly sensitive to the polarity of the transmembrane chloride gradient. Reducing the transmembrane chloride gradient by ion substitution or by blocking the K-Cl cotransporter resulted in the starburst cells responding equally to light moving in opposite directions. Conversely, increasing the chloride gradient by blocking the Na-K-Cl cotransporter eliminated responses to light moving in either direction. Moreover, in each case, blocking the chloride cotransporters or reducing the transmembrane chloride gradient eliminated the directional responses of DS ganglion cells in a manner opposite that of the starburst cells. These results indicate that chloride cotransporters play a key role in the generation of direction selectivity and that the directional responses of starburst cells and DS ganglion cells are exquisitely sensitive to the chloride equilibrium potential. The findings further suggest that the directional responses of DS ganglion cells are mediated in part by the directional release of γ-aminobutyric acid from starburst dendrites and that the asymmetric distribution of the two cotransporters along starburst-cell dendrites mediates direction selectivity. A model of direction selectivity in the retina that incorporates these and other findings is discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2637041100</identifier><identifier>PMID: 14665697</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amacrine cells ; Animals ; Biological Sciences ; Cations - metabolism ; Chlorides ; Chlorides - metabolism ; Dendrites ; Dendrites - physiology ; Dendrites - radiation effects ; Eyes & eyesight ; gamma-Aminobutyric Acid - physiology ; Ganglia ; Light ; Lymphocytes ; Membrane potential ; Neurology ; Neurons ; Neuroscience ; Rabbits ; Receptors ; Receptors, GABA - physiology ; Retina ; Retina - physiology ; Retinal Ganglion Cells - physiology ; Retinal Ganglion Cells - radiation effects ; Symporters - physiology ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.16047-16052</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 23, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-2f822842112c504a4095d4cd2fbd2e11b296c08dfa7c750a42fba26e16c251be3</citedby><cites>FETCH-LOGICAL-c526t-2f822842112c504a4095d4cd2fbd2e11b296c08dfa7c750a42fba26e16c251be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3149128$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3149128$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14665697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavrikov, Konstantin E.</creatorcontrib><creatorcontrib>Dmitriev, Andrey V.</creatorcontrib><creatorcontrib>Keyser, Kent T.</creatorcontrib><creatorcontrib>Mangel, Stuart C.</creatorcontrib><title>Cation-Chloride Cotransporters Mediate Neural Computation in the Retina</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The ability of directionally selective (DS) retinal ganglion cells to respond selectively to stimulus motion in one direction is a classic unresolved example of computation in a local neural circuit. Recent evidence indicates that DS responses occur first in the retina in the dendrites of starburst amacrine cells (interneurons presynaptic to the ganglion cells). We report that the directional responses of starburst-cell dendrites and DS ganglion cells are highly sensitive to the polarity of the transmembrane chloride gradient. Reducing the transmembrane chloride gradient by ion substitution or by blocking the K-Cl cotransporter resulted in the starburst cells responding equally to light moving in opposite directions. Conversely, increasing the chloride gradient by blocking the Na-K-Cl cotransporter eliminated responses to light moving in either direction. Moreover, in each case, blocking the chloride cotransporters or reducing the transmembrane chloride gradient eliminated the directional responses of DS ganglion cells in a manner opposite that of the starburst cells. These results indicate that chloride cotransporters play a key role in the generation of direction selectivity and that the directional responses of starburst cells and DS ganglion cells are exquisitely sensitive to the chloride equilibrium potential. The findings further suggest that the directional responses of DS ganglion cells are mediated in part by the directional release of γ-aminobutyric acid from starburst dendrites and that the asymmetric distribution of the two cotransporters along starburst-cell dendrites mediates direction selectivity. A model of direction selectivity in the retina that incorporates these and other findings is discussed.</description><subject>Amacrine cells</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cations - metabolism</subject><subject>Chlorides</subject><subject>Chlorides - metabolism</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Dendrites - radiation effects</subject><subject>Eyes & eyesight</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Ganglia</subject><subject>Light</subject><subject>Lymphocytes</subject><subject>Membrane potential</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Rabbits</subject><subject>Receptors</subject><subject>Receptors, GABA - physiology</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Ganglion Cells - radiation effects</subject><subject>Symporters - physiology</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAUxC1ERZfCmQtCEQckDmnfc_wRH3pAEZRKBSQEZ8ubOGxWWTvYTlX-exx21QUuPfkwvxmN3xDyAuEcQVYXkzPxnIpKAkMEeERWCApLwRQ8JisAKsuaUXZKnsa4BQDFa3hCTpEJwYWSK3LVmDR4Vzab0Yehs0XjUzAuTj4kG2LxyXaDSbb4bOdgxqzupjn9sRSDK9LGFl9tGpx5Rk56M0b7_PCeke8f3n9rPpY3X66um3c3ZcupSCXta0pzI0TacmCG5UYdazvarztqEddUiRbqrjeylRwMy4KhwqJoKce1rc7I5T53mtc727XW5bqjnsKwM-GX9mbQ_ypu2Ogf_lZXIIWC7H9z8Af_c7Yx6d0QWzuOxlk_Ry2R1ZLX_EEQFeUVF0vi6__ArZ-Dy0fQFLBSquJL2sUeaoOPMdj-vjGCXpbUy5L6uGR2vPr7o0f-MF0G3h6AxXmMg5yiUQCTup_HMdm7lNniATYjL_fINiYf7pkKmUJaV78BAPG74g</recordid><startdate>20031223</startdate><enddate>20031223</enddate><creator>Gavrikov, Konstantin E.</creator><creator>Dmitriev, Andrey V.</creator><creator>Keyser, Kent T.</creator><creator>Mangel, Stuart C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031223</creationdate><title>Cation-Chloride Cotransporters Mediate Neural Computation in the Retina</title><author>Gavrikov, Konstantin E. ; Dmitriev, Andrey V. ; Keyser, Kent T. ; Mangel, Stuart C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-2f822842112c504a4095d4cd2fbd2e11b296c08dfa7c750a42fba26e16c251be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amacrine cells</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cations - metabolism</topic><topic>Chlorides</topic><topic>Chlorides - metabolism</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Dendrites - radiation effects</topic><topic>Eyes & eyesight</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Ganglia</topic><topic>Light</topic><topic>Lymphocytes</topic><topic>Membrane potential</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Rabbits</topic><topic>Receptors</topic><topic>Receptors, GABA - physiology</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Ganglion Cells - radiation effects</topic><topic>Symporters - physiology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavrikov, Konstantin E.</creatorcontrib><creatorcontrib>Dmitriev, Andrey V.</creatorcontrib><creatorcontrib>Keyser, Kent T.</creatorcontrib><creatorcontrib>Mangel, Stuart C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavrikov, Konstantin E.</au><au>Dmitriev, Andrey V.</au><au>Keyser, Kent T.</au><au>Mangel, Stuart C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation-Chloride Cotransporters Mediate Neural Computation in the Retina</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-23</date><risdate>2003</risdate><volume>100</volume><issue>26</issue><spage>16047</spage><epage>16052</epage><pages>16047-16052</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The ability of directionally selective (DS) retinal ganglion cells to respond selectively to stimulus motion in one direction is a classic unresolved example of computation in a local neural circuit. Recent evidence indicates that DS responses occur first in the retina in the dendrites of starburst amacrine cells (interneurons presynaptic to the ganglion cells). We report that the directional responses of starburst-cell dendrites and DS ganglion cells are highly sensitive to the polarity of the transmembrane chloride gradient. Reducing the transmembrane chloride gradient by ion substitution or by blocking the K-Cl cotransporter resulted in the starburst cells responding equally to light moving in opposite directions. Conversely, increasing the chloride gradient by blocking the Na-K-Cl cotransporter eliminated responses to light moving in either direction. Moreover, in each case, blocking the chloride cotransporters or reducing the transmembrane chloride gradient eliminated the directional responses of DS ganglion cells in a manner opposite that of the starburst cells. These results indicate that chloride cotransporters play a key role in the generation of direction selectivity and that the directional responses of starburst cells and DS ganglion cells are exquisitely sensitive to the chloride equilibrium potential. The findings further suggest that the directional responses of DS ganglion cells are mediated in part by the directional release of γ-aminobutyric acid from starburst dendrites and that the asymmetric distribution of the two cotransporters along starburst-cell dendrites mediates direction selectivity. A model of direction selectivity in the retina that incorporates these and other findings is discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14665697</pmid><doi>10.1073/pnas.2637041100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.16047-16052 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_19253560 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amacrine cells Animals Biological Sciences Cations - metabolism Chlorides Chlorides - metabolism Dendrites Dendrites - physiology Dendrites - radiation effects Eyes & eyesight gamma-Aminobutyric Acid - physiology Ganglia Light Lymphocytes Membrane potential Neurology Neurons Neuroscience Rabbits Receptors Receptors, GABA - physiology Retina Retina - physiology Retinal Ganglion Cells - physiology Retinal Ganglion Cells - radiation effects Symporters - physiology Vertebrates |
title | Cation-Chloride Cotransporters Mediate Neural Computation in the Retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation-Chloride%20Cotransporters%20Mediate%20Neural%20Computation%20in%20the%20Retina&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gavrikov,%20Konstantin%20E.&rft.date=2003-12-23&rft.volume=100&rft.issue=26&rft.spage=16047&rft.epage=16052&rft.pages=16047-16052&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2637041100&rft_dat=%3Cjstor_proqu%3E3149128%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201399355&rft_id=info:pmid/14665697&rft_jstor_id=3149128&rfr_iscdi=true |