Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore
In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effec...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2017-09, Vol.89 (17), p.8822-8829 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8829 |
---|---|
container_issue | 17 |
container_start_page | 8822 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Ivica, Josip Williamson, Philip T. F de Planque, Maurits R. R |
description | In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins. |
doi_str_mv | 10.1021/acs.analchem.7b01246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924604709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924604709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4Mobk6_gUjBi5fOlzRr0-McOoU5Ree5vKbp1pE2M2kPfntbuil48JQH-f3_j_cj5JLCmAKjtyjdGCvUcqPKcZQCZTw8IkM6YeCHQrBjMgSAwGcRwICcObcFoBRoeEoGTESTdgqG5PUdde3NLWaFqmrv2WSNxrowlWdy77mQ1rwtp97KYuW0kf1PvbGmWW889O4Ko826kKi9JVZmZ6w6Jyc5aqcu9u-IfDzcr2aP_uJl_jSbLnzkQtR-ACJFCAKBnIa5oFJSwaJQ5irKRJamPINQMplxCOM8EoAcBU7ilMpA5TIWwYjc9L07az4b5eqkLJxUWmOlTOMSGrc-gEcQt-j1H3RrGtuq6yjOGA1i0RXynmpvds6qPNnZokT7lVBIOuNJazw5GE_2xtvY1b68SUuV_YQOilsAeqCL_y7-r_MblxuPTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942213988</pqid></control><display><type>article</type><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><source>American Chemical Society Journals</source><creator>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</creator><creatorcontrib>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</creatorcontrib><description>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b01246</identifier><identifier>PMID: 28750163</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biomarkers ; Chemistry ; Concentration gradient ; Deoxyribonucleic acid ; Destabilization ; DNA ; DNA probes ; Dwell time ; Lithium chloride ; miRNA ; Porins ; Porosity ; Potassium chloride ; Probes ; Ribonucleic acid ; RNA ; Salts ; Selectivity ; Silicon nitride ; Stability ; Translocation</subject><ispartof>Analytical chemistry (Washington), 2017-09, Vol.89 (17), p.8822-8829</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</citedby><cites>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</cites><orcidid>0000-0002-8787-0513 ; 0000-0002-0231-8640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b01246$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b01246$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28750163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivica, Josip</creatorcontrib><creatorcontrib>Williamson, Philip T. F</creatorcontrib><creatorcontrib>de Planque, Maurits R. R</creatorcontrib><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</description><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Chemistry</subject><subject>Concentration gradient</subject><subject>Deoxyribonucleic acid</subject><subject>Destabilization</subject><subject>DNA</subject><subject>DNA probes</subject><subject>Dwell time</subject><subject>Lithium chloride</subject><subject>miRNA</subject><subject>Porins</subject><subject>Porosity</subject><subject>Potassium chloride</subject><subject>Probes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Silicon nitride</subject><subject>Stability</subject><subject>Translocation</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4Mobk6_gUjBi5fOlzRr0-McOoU5Ree5vKbp1pE2M2kPfntbuil48JQH-f3_j_cj5JLCmAKjtyjdGCvUcqPKcZQCZTw8IkM6YeCHQrBjMgSAwGcRwICcObcFoBRoeEoGTESTdgqG5PUdde3NLWaFqmrv2WSNxrowlWdy77mQ1rwtp97KYuW0kf1PvbGmWW889O4Ko826kKi9JVZmZ6w6Jyc5aqcu9u-IfDzcr2aP_uJl_jSbLnzkQtR-ACJFCAKBnIa5oFJSwaJQ5irKRJamPINQMplxCOM8EoAcBU7ilMpA5TIWwYjc9L07az4b5eqkLJxUWmOlTOMSGrc-gEcQt-j1H3RrGtuq6yjOGA1i0RXynmpvds6qPNnZokT7lVBIOuNJazw5GE_2xtvY1b68SUuV_YQOilsAeqCL_y7-r_MblxuPTA</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Ivica, Josip</creator><creator>Williamson, Philip T. F</creator><creator>de Planque, Maurits R. R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8787-0513</orcidid><orcidid>https://orcid.org/0000-0002-0231-8640</orcidid></search><sort><creationdate>20170905</creationdate><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><author>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Chemistry</topic><topic>Concentration gradient</topic><topic>Deoxyribonucleic acid</topic><topic>Destabilization</topic><topic>DNA</topic><topic>DNA probes</topic><topic>Dwell time</topic><topic>Lithium chloride</topic><topic>miRNA</topic><topic>Porins</topic><topic>Porosity</topic><topic>Potassium chloride</topic><topic>Probes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Silicon nitride</topic><topic>Stability</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivica, Josip</creatorcontrib><creatorcontrib>Williamson, Philip T. F</creatorcontrib><creatorcontrib>de Planque, Maurits R. R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivica, Josip</au><au>Williamson, Philip T. F</au><au>de Planque, Maurits R. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>89</volume><issue>17</issue><spage>8822</spage><epage>8829</epage><pages>8822-8829</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28750163</pmid><doi>10.1021/acs.analchem.7b01246</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8787-0513</orcidid><orcidid>https://orcid.org/0000-0002-0231-8640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-09, Vol.89 (17), p.8822-8829 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1924604709 |
source | American Chemical Society Journals |
subjects | Analytical chemistry Biomarkers Chemistry Concentration gradient Deoxyribonucleic acid Destabilization DNA DNA probes Dwell time Lithium chloride miRNA Porins Porosity Potassium chloride Probes Ribonucleic acid RNA Salts Selectivity Silicon nitride Stability Translocation |
title | Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20Gradient%20Modulation%20of%20MicroRNA%20Translocation%20through%20a%20Biological%20Nanopore&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ivica,%20Josip&rft.date=2017-09-05&rft.volume=89&rft.issue=17&rft.spage=8822&rft.epage=8829&rft.pages=8822-8829&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b01246&rft_dat=%3Cproquest_cross%3E1924604709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942213988&rft_id=info:pmid/28750163&rfr_iscdi=true |