Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore

In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-09, Vol.89 (17), p.8822-8829
Hauptverfasser: Ivica, Josip, Williamson, Philip T. F, de Planque, Maurits R. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8829
container_issue 17
container_start_page 8822
container_title Analytical chemistry (Washington)
container_volume 89
creator Ivica, Josip
Williamson, Philip T. F
de Planque, Maurits R. R
description In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.
doi_str_mv 10.1021/acs.analchem.7b01246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924604709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924604709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4Mobk6_gUjBi5fOlzRr0-McOoU5Ree5vKbp1pE2M2kPfntbuil48JQH-f3_j_cj5JLCmAKjtyjdGCvUcqPKcZQCZTw8IkM6YeCHQrBjMgSAwGcRwICcObcFoBRoeEoGTESTdgqG5PUdde3NLWaFqmrv2WSNxrowlWdy77mQ1rwtp97KYuW0kf1PvbGmWW889O4Ko826kKi9JVZmZ6w6Jyc5aqcu9u-IfDzcr2aP_uJl_jSbLnzkQtR-ACJFCAKBnIa5oFJSwaJQ5irKRJamPINQMplxCOM8EoAcBU7ilMpA5TIWwYjc9L07az4b5eqkLJxUWmOlTOMSGrc-gEcQt-j1H3RrGtuq6yjOGA1i0RXynmpvds6qPNnZokT7lVBIOuNJazw5GE_2xtvY1b68SUuV_YQOilsAeqCL_y7-r_MblxuPTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942213988</pqid></control><display><type>article</type><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><source>American Chemical Society Journals</source><creator>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</creator><creatorcontrib>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</creatorcontrib><description>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b01246</identifier><identifier>PMID: 28750163</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biomarkers ; Chemistry ; Concentration gradient ; Deoxyribonucleic acid ; Destabilization ; DNA ; DNA probes ; Dwell time ; Lithium chloride ; miRNA ; Porins ; Porosity ; Potassium chloride ; Probes ; Ribonucleic acid ; RNA ; Salts ; Selectivity ; Silicon nitride ; Stability ; Translocation</subject><ispartof>Analytical chemistry (Washington), 2017-09, Vol.89 (17), p.8822-8829</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</citedby><cites>FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</cites><orcidid>0000-0002-8787-0513 ; 0000-0002-0231-8640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b01246$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b01246$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28750163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivica, Josip</creatorcontrib><creatorcontrib>Williamson, Philip T. F</creatorcontrib><creatorcontrib>de Planque, Maurits R. R</creatorcontrib><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</description><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Chemistry</subject><subject>Concentration gradient</subject><subject>Deoxyribonucleic acid</subject><subject>Destabilization</subject><subject>DNA</subject><subject>DNA probes</subject><subject>Dwell time</subject><subject>Lithium chloride</subject><subject>miRNA</subject><subject>Porins</subject><subject>Porosity</subject><subject>Potassium chloride</subject><subject>Probes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Silicon nitride</subject><subject>Stability</subject><subject>Translocation</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4Mobk6_gUjBi5fOlzRr0-McOoU5Ree5vKbp1pE2M2kPfntbuil48JQH-f3_j_cj5JLCmAKjtyjdGCvUcqPKcZQCZTw8IkM6YeCHQrBjMgSAwGcRwICcObcFoBRoeEoGTESTdgqG5PUdde3NLWaFqmrv2WSNxrowlWdy77mQ1rwtp97KYuW0kf1PvbGmWW889O4Ko826kKi9JVZmZ6w6Jyc5aqcu9u-IfDzcr2aP_uJl_jSbLnzkQtR-ACJFCAKBnIa5oFJSwaJQ5irKRJamPINQMplxCOM8EoAcBU7ilMpA5TIWwYjc9L07az4b5eqkLJxUWmOlTOMSGrc-gEcQt-j1H3RrGtuq6yjOGA1i0RXynmpvds6qPNnZokT7lVBIOuNJazw5GE_2xtvY1b68SUuV_YQOilsAeqCL_y7-r_MblxuPTA</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Ivica, Josip</creator><creator>Williamson, Philip T. F</creator><creator>de Planque, Maurits R. R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8787-0513</orcidid><orcidid>https://orcid.org/0000-0002-0231-8640</orcidid></search><sort><creationdate>20170905</creationdate><title>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</title><author>Ivica, Josip ; Williamson, Philip T. F ; de Planque, Maurits R. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-308ba0338a416f81cc18276cfe7d8dbb4d06c2cd4069f780a4a8a59b1c3efc983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Chemistry</topic><topic>Concentration gradient</topic><topic>Deoxyribonucleic acid</topic><topic>Destabilization</topic><topic>DNA</topic><topic>DNA probes</topic><topic>Dwell time</topic><topic>Lithium chloride</topic><topic>miRNA</topic><topic>Porins</topic><topic>Porosity</topic><topic>Potassium chloride</topic><topic>Probes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Silicon nitride</topic><topic>Stability</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivica, Josip</creatorcontrib><creatorcontrib>Williamson, Philip T. F</creatorcontrib><creatorcontrib>de Planque, Maurits R. R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivica, Josip</au><au>Williamson, Philip T. F</au><au>de Planque, Maurits R. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>89</volume><issue>17</issue><spage>8822</spage><epage>8829</epage><pages>8822-8829</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28750163</pmid><doi>10.1021/acs.analchem.7b01246</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8787-0513</orcidid><orcidid>https://orcid.org/0000-0002-0231-8640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-09, Vol.89 (17), p.8822-8829
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1924604709
source American Chemical Society Journals
subjects Analytical chemistry
Biomarkers
Chemistry
Concentration gradient
Deoxyribonucleic acid
Destabilization
DNA
DNA probes
Dwell time
Lithium chloride
miRNA
Porins
Porosity
Potassium chloride
Probes
Ribonucleic acid
RNA
Salts
Selectivity
Silicon nitride
Stability
Translocation
title Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20Gradient%20Modulation%20of%20MicroRNA%20Translocation%20through%20a%20Biological%20Nanopore&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ivica,%20Josip&rft.date=2017-09-05&rft.volume=89&rft.issue=17&rft.spage=8822&rft.epage=8829&rft.pages=8822-8829&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b01246&rft_dat=%3Cproquest_cross%3E1924604709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942213988&rft_id=info:pmid/28750163&rfr_iscdi=true