Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization

Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2017-09, Vol.28 (9), p.2254-2265
Hauptverfasser: Sharma, Rakesh, Kapusetti, Govinda, Bhong, Sayali Yashwant, Roy, Partha, Singh, Santosh Kumar, Singh, Shikha, Balavigneswaran, Chelladurai Karthikeyan, Mahato, Kaushal Kumar, Ray, Biswajit, Maiti, Pralay, Misra, Nira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2265
container_issue 9
container_start_page 2254
container_title Bioconjugate chemistry
container_volume 28
creator Sharma, Rakesh
Kapusetti, Govinda
Bhong, Sayali Yashwant
Roy, Partha
Singh, Santosh Kumar
Singh, Shikha
Balavigneswaran, Chelladurai Karthikeyan
Mahato, Kaushal Kumar
Ray, Biswajit
Maiti, Pralay
Misra, Nira
description Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.
doi_str_mv 10.1021/acs.bioconjchem.7b00241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924604580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924604580</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-f36d3755d35c3a0fa742775b19d531899a5244d68858c4dbdce530e7a46dc2833</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwFyASl3LI4s_YOZZVW5AqlQOcI8eeVbyy48V2CtsTV878Q34Jjnb5EBdOMyM984w0b1W9wGiFEcGvlU6rwQYdpq0ewa_EgBBh-EF1ijlBDZOYPCw9YrTBEpGT6klKW4RQhyV5XJ0QKTglgp9W325ThsVjZp3tHdQX3k7QXM1TGcOknL0HU19HtRthgh9fv78Pbn_uIY97Vy9F6bh3KsOr-k2YoF6DhynX6-B3IdkM9WebxzJOOQbniuryS8gjRG91vag8RHuvllNPq0cb5RI8O9az6uPV5Yf12-bm9vrd-uKmUVTy3Gxoa6jg3FCuqUIbJRgRgg-4M5xi2XWKE8ZMKyWXmpnBaOAUgVCsNZpISs-q84N3F8OnGVLuvU0anFMThDn1uCOsRYxLVNCX_6DbMMfylIXiLaISS1kocaB0DClF2PS7aL2K-x6jfkmrL2n1f6XVH9Mqm8-P_nnwYH7v_YqnAPQALIY_t_-j_QmFOKpB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956038188</pqid></control><display><type>article</type><title>Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sharma, Rakesh ; Kapusetti, Govinda ; Bhong, Sayali Yashwant ; Roy, Partha ; Singh, Santosh Kumar ; Singh, Shikha ; Balavigneswaran, Chelladurai Karthikeyan ; Mahato, Kaushal Kumar ; Ray, Biswajit ; Maiti, Pralay ; Misra, Nira</creator><creatorcontrib>Sharma, Rakesh ; Kapusetti, Govinda ; Bhong, Sayali Yashwant ; Roy, Partha ; Singh, Santosh Kumar ; Singh, Shikha ; Balavigneswaran, Chelladurai Karthikeyan ; Mahato, Kaushal Kumar ; Ray, Biswajit ; Maiti, Pralay ; Misra, Nira</creatorcontrib><description>Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00241</identifier><identifier>PMID: 28753275</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amination ; Animals ; Arthroplasty ; Biocompatibility ; Biological activity ; Biomedical materials ; Body temperature ; Bonding strength ; Bone Cements - chemistry ; Bone implants ; Bone Substitutes - chemistry ; Bones ; Calcification ; Carbon ; Cell Line ; Cement ; Cement reinforcements ; Composite materials ; Control stability ; Curing ; Cytotoxicity ; Dynamic stability ; Exothermic reactions ; Fatigue ; Fatigue strength ; Fillers ; Graphene ; Graphite - chemistry ; Humans ; Implantation ; Materials Testing ; Matrix ; Mechanical properties ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Osseointegration ; Osteoconduction ; Osteogenesis ; Oxidative stress ; Polymerization ; Polymethyl methacrylate ; Polymethyl Methacrylate - chemistry ; Prostheses ; Rabbits ; Surgical implants ; Sustainability ; Temperature ; Temperature effects ; Thermal stability ; Tissues ; Toxicity</subject><ispartof>Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2254-2265</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 20, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-f36d3755d35c3a0fa742775b19d531899a5244d68858c4dbdce530e7a46dc2833</citedby><cites>FETCH-LOGICAL-a385t-f36d3755d35c3a0fa742775b19d531899a5244d68858c4dbdce530e7a46dc2833</cites><orcidid>0000-0002-6879-3591 ; 0000-0002-3700-5206 ; 0000-0001-5858-9004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00241$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00241$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28753275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Kapusetti, Govinda</creatorcontrib><creatorcontrib>Bhong, Sayali Yashwant</creatorcontrib><creatorcontrib>Roy, Partha</creatorcontrib><creatorcontrib>Singh, Santosh Kumar</creatorcontrib><creatorcontrib>Singh, Shikha</creatorcontrib><creatorcontrib>Balavigneswaran, Chelladurai Karthikeyan</creatorcontrib><creatorcontrib>Mahato, Kaushal Kumar</creatorcontrib><creatorcontrib>Ray, Biswajit</creatorcontrib><creatorcontrib>Maiti, Pralay</creatorcontrib><creatorcontrib>Misra, Nira</creatorcontrib><title>Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.</description><subject>Amination</subject><subject>Animals</subject><subject>Arthroplasty</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body temperature</subject><subject>Bonding strength</subject><subject>Bone Cements - chemistry</subject><subject>Bone implants</subject><subject>Bone Substitutes - chemistry</subject><subject>Bones</subject><subject>Calcification</subject><subject>Carbon</subject><subject>Cell Line</subject><subject>Cement</subject><subject>Cement reinforcements</subject><subject>Composite materials</subject><subject>Control stability</subject><subject>Curing</subject><subject>Cytotoxicity</subject><subject>Dynamic stability</subject><subject>Exothermic reactions</subject><subject>Fatigue</subject><subject>Fatigue strength</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Implantation</subject><subject>Materials Testing</subject><subject>Matrix</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Osseointegration</subject><subject>Osteoconduction</subject><subject>Osteogenesis</subject><subject>Oxidative stress</subject><subject>Polymerization</subject><subject>Polymethyl methacrylate</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>Prostheses</subject><subject>Rabbits</subject><subject>Surgical implants</subject><subject>Sustainability</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>Tissues</subject><subject>Toxicity</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwFyASl3LI4s_YOZZVW5AqlQOcI8eeVbyy48V2CtsTV878Q34Jjnb5EBdOMyM984w0b1W9wGiFEcGvlU6rwQYdpq0ewa_EgBBh-EF1ijlBDZOYPCw9YrTBEpGT6klKW4RQhyV5XJ0QKTglgp9W325ThsVjZp3tHdQX3k7QXM1TGcOknL0HU19HtRthgh9fv78Pbn_uIY97Vy9F6bh3KsOr-k2YoF6DhynX6-B3IdkM9WebxzJOOQbniuryS8gjRG91vag8RHuvllNPq0cb5RI8O9az6uPV5Yf12-bm9vrd-uKmUVTy3Gxoa6jg3FCuqUIbJRgRgg-4M5xi2XWKE8ZMKyWXmpnBaOAUgVCsNZpISs-q84N3F8OnGVLuvU0anFMThDn1uCOsRYxLVNCX_6DbMMfylIXiLaISS1kocaB0DClF2PS7aL2K-x6jfkmrL2n1f6XVH9Mqm8-P_nnwYH7v_YqnAPQALIY_t_-j_QmFOKpB</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Sharma, Rakesh</creator><creator>Kapusetti, Govinda</creator><creator>Bhong, Sayali Yashwant</creator><creator>Roy, Partha</creator><creator>Singh, Santosh Kumar</creator><creator>Singh, Shikha</creator><creator>Balavigneswaran, Chelladurai Karthikeyan</creator><creator>Mahato, Kaushal Kumar</creator><creator>Ray, Biswajit</creator><creator>Maiti, Pralay</creator><creator>Misra, Nira</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6879-3591</orcidid><orcidid>https://orcid.org/0000-0002-3700-5206</orcidid><orcidid>https://orcid.org/0000-0001-5858-9004</orcidid></search><sort><creationdate>20170920</creationdate><title>Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization</title><author>Sharma, Rakesh ; Kapusetti, Govinda ; Bhong, Sayali Yashwant ; Roy, Partha ; Singh, Santosh Kumar ; Singh, Shikha ; Balavigneswaran, Chelladurai Karthikeyan ; Mahato, Kaushal Kumar ; Ray, Biswajit ; Maiti, Pralay ; Misra, Nira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-f36d3755d35c3a0fa742775b19d531899a5244d68858c4dbdce530e7a46dc2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amination</topic><topic>Animals</topic><topic>Arthroplasty</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body temperature</topic><topic>Bonding strength</topic><topic>Bone Cements - chemistry</topic><topic>Bone implants</topic><topic>Bone Substitutes - chemistry</topic><topic>Bones</topic><topic>Calcification</topic><topic>Carbon</topic><topic>Cell Line</topic><topic>Cement</topic><topic>Cement reinforcements</topic><topic>Composite materials</topic><topic>Control stability</topic><topic>Curing</topic><topic>Cytotoxicity</topic><topic>Dynamic stability</topic><topic>Exothermic reactions</topic><topic>Fatigue</topic><topic>Fatigue strength</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Implantation</topic><topic>Materials Testing</topic><topic>Matrix</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Osseointegration</topic><topic>Osteoconduction</topic><topic>Osteogenesis</topic><topic>Oxidative stress</topic><topic>Polymerization</topic><topic>Polymethyl methacrylate</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>Prostheses</topic><topic>Rabbits</topic><topic>Surgical implants</topic><topic>Sustainability</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>Tissues</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Rakesh</creatorcontrib><creatorcontrib>Kapusetti, Govinda</creatorcontrib><creatorcontrib>Bhong, Sayali Yashwant</creatorcontrib><creatorcontrib>Roy, Partha</creatorcontrib><creatorcontrib>Singh, Santosh Kumar</creatorcontrib><creatorcontrib>Singh, Shikha</creatorcontrib><creatorcontrib>Balavigneswaran, Chelladurai Karthikeyan</creatorcontrib><creatorcontrib>Mahato, Kaushal Kumar</creatorcontrib><creatorcontrib>Ray, Biswajit</creatorcontrib><creatorcontrib>Maiti, Pralay</creatorcontrib><creatorcontrib>Misra, Nira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Rakesh</au><au>Kapusetti, Govinda</au><au>Bhong, Sayali Yashwant</au><au>Roy, Partha</au><au>Singh, Santosh Kumar</au><au>Singh, Shikha</au><au>Balavigneswaran, Chelladurai Karthikeyan</au><au>Mahato, Kaushal Kumar</au><au>Ray, Biswajit</au><au>Maiti, Pralay</au><au>Misra, Nira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2017-09-20</date><risdate>2017</risdate><volume>28</volume><issue>9</issue><spage>2254</spage><epage>2265</epage><pages>2254-2265</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Bone cement has found extensive usage in joint arthroplasty over the last 50 years; still, the development of bone cement with essential properties such as high fatigue resistance, lower exothermic temperature, and bioactivity has been an unsolved problem. In our present work, we have addressed all of the mentioned shortcomings of bone cement by reinforcing it with graphene (GR), graphene oxide (GO), and surface-modified amino graphene (AG) fillers. These nanocomposites have shown hypsochromic shifts, suggesting strong interactions between the filler material and the polymer matrix. AG-based nanohybrids have shown greater osteointegration and lower cytotoxicity compared to other nanohybrids as well as pristine bone cement. They have also reduced oxidative stress on cells, resulting in calcification within 20 days of the implantation of nanohybrids into the rabbits. They have significantly reduced the exothermic curing temperature to body temperature and increased the setting time to facilitate practitioners, suggesting that reaction temperature and settling time can be dynamically controlled by varying the concentration of the filler. Thermal stability and enhanced mechanical properties have been achieved in nanohybrids vis-à-vis pure bone cement. Thus, this newly developed nanocomposite can create natural bonding with bone tissues for improved bioactivity, longer sustainability, and better strength in the prosthesis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28753275</pmid><doi>10.1021/acs.bioconjchem.7b00241</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6879-3591</orcidid><orcidid>https://orcid.org/0000-0002-3700-5206</orcidid><orcidid>https://orcid.org/0000-0001-5858-9004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2254-2265
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_miscellaneous_1924604580
source MEDLINE; American Chemical Society Journals
subjects Amination
Animals
Arthroplasty
Biocompatibility
Biological activity
Biomedical materials
Body temperature
Bonding strength
Bone Cements - chemistry
Bone implants
Bone Substitutes - chemistry
Bones
Calcification
Carbon
Cell Line
Cement
Cement reinforcements
Composite materials
Control stability
Curing
Cytotoxicity
Dynamic stability
Exothermic reactions
Fatigue
Fatigue strength
Fillers
Graphene
Graphite - chemistry
Humans
Implantation
Materials Testing
Matrix
Mechanical properties
Nanocomposites
Nanocomposites - chemistry
Nanocomposites - ultrastructure
Osseointegration
Osteoconduction
Osteogenesis
Oxidative stress
Polymerization
Polymethyl methacrylate
Polymethyl Methacrylate - chemistry
Prostheses
Rabbits
Surgical implants
Sustainability
Temperature
Temperature effects
Thermal stability
Tissues
Toxicity
title Osteoconductive Amine-Functionalized Graphene–Poly(methyl methacrylate) Bone Cement Composite with Controlled Exothermic Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoconductive%20Amine-Functionalized%20Graphene%E2%80%93Poly(methyl%20methacrylate)%20Bone%20Cement%20Composite%20with%20Controlled%20Exothermic%20Polymerization&rft.jtitle=Bioconjugate%20chemistry&rft.au=Sharma,%20Rakesh&rft.date=2017-09-20&rft.volume=28&rft.issue=9&rft.spage=2254&rft.epage=2265&rft.pages=2254-2265&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00241&rft_dat=%3Cproquest_cross%3E1924604580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956038188&rft_id=info:pmid/28753275&rfr_iscdi=true