Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics
Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20170339 |
---|---|
container_issue | 1859 |
container_start_page | 20170339 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 284 |
creator | Chapman, Phillip D. Bradley, Samual P. Haught, Erica J. Riggs, Kassandra E. Haffar, Mouaz M. Daly, Kevin C. Dacks, Andrew M. |
description | Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths. |
doi_str_mv | 10.1098/rspb.2017.0339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924594289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924594289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEotPCliWyxIZNBj8Te4MEI15SJRCPtfE4NxOXJA62UzT99TjMULWVQF5Ysr97jo9PUTwheE2wki9CnLZrikm9xoype8WK8JqUVAl-v1hhVdFSckFPitMYLzDGSkjxsDihsuZ5kVXxfeNLPyXnR-RbZNDgkw9l8mWEMfqwR52LyQxuhLBzFlkX7OwSsj4E6E2CiH651CE3RrAJtb3bdQltnR_AdmZ0Nj4qHrSmj_D4uJ8V396--bp5X55_fPdh8-q8tKKiqTQYOABYW1kJFKBiksuqsQJayxXGrFaWNkoAUGvqHJhvZd1wIvNJwzhmZ8XLg-40bwdoLIwpmF5PwQ0m7LU3Tt--GV2nd_5SC8EZJSQLPD8KBP9zhpj04KKFvjcj-DlqoigXilOpMvrsDnrh5zDmeJmSTLGK44VaHygbfIwB2uvHEKyX8vRSnl7K00t5eeDpzQjX-N-2MsAOQPD7bOatg7S_4f0v2R__m_r85dPrSyq5y3-pNJaM4JorhvWVm45SkmsX4wz6D3Jb_q7bbxUzzOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983936409</pqid></control><display><type>article</type><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</creator><creatorcontrib>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</creatorcontrib><description>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2017.0339</identifier><identifier>PMID: 28747471</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Air flow ; Animals ; Antennae ; Arthropod ; Arthropods ; Biomechanics ; Butterflies & moths ; Circuits ; Crustaceans ; Discharge ; Evolution ; Exaptation ; Flight ; Flight, Animal ; Histamine ; Information systems ; Insects ; Lobes ; Manduca - physiology ; Neural networks ; Neurons ; Neurons - physiology ; Neuropil ; Neuroscience And Cognition ; Nose ; Odor ; Olfaction ; Olfactory Bulb - physiology ; Olfactory pathways ; Olfactory system ; Oscillations ; Sensory stimulation ; Smell ; Smell - physiology ; Wings ; Wings, Animal</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339</ispartof><rights>2017 The Authors.</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jul 26, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</citedby><cites>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</cites><orcidid>0000-0002-6805-4211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543211/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543211/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28747471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Phillip D.</creatorcontrib><creatorcontrib>Bradley, Samual P.</creatorcontrib><creatorcontrib>Haught, Erica J.</creatorcontrib><creatorcontrib>Riggs, Kassandra E.</creatorcontrib><creatorcontrib>Haffar, Mouaz M.</creatorcontrib><creatorcontrib>Daly, Kevin C.</creatorcontrib><creatorcontrib>Dacks, Andrew M.</creatorcontrib><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</description><subject>Air flow</subject><subject>Animals</subject><subject>Antennae</subject><subject>Arthropod</subject><subject>Arthropods</subject><subject>Biomechanics</subject><subject>Butterflies & moths</subject><subject>Circuits</subject><subject>Crustaceans</subject><subject>Discharge</subject><subject>Evolution</subject><subject>Exaptation</subject><subject>Flight</subject><subject>Flight, Animal</subject><subject>Histamine</subject><subject>Information systems</subject><subject>Insects</subject><subject>Lobes</subject><subject>Manduca - physiology</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropil</subject><subject>Neuroscience And Cognition</subject><subject>Nose</subject><subject>Odor</subject><subject>Olfaction</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory pathways</subject><subject>Olfactory system</subject><subject>Oscillations</subject><subject>Sensory stimulation</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Wings</subject><subject>Wings, Animal</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhSMEotPCliWyxIZNBj8Te4MEI15SJRCPtfE4NxOXJA62UzT99TjMULWVQF5Ysr97jo9PUTwheE2wki9CnLZrikm9xoype8WK8JqUVAl-v1hhVdFSckFPitMYLzDGSkjxsDihsuZ5kVXxfeNLPyXnR-RbZNDgkw9l8mWEMfqwR52LyQxuhLBzFlkX7OwSsj4E6E2CiH651CE3RrAJtb3bdQltnR_AdmZ0Nj4qHrSmj_D4uJ8V396--bp5X55_fPdh8-q8tKKiqTQYOABYW1kJFKBiksuqsQJayxXGrFaWNkoAUGvqHJhvZd1wIvNJwzhmZ8XLg-40bwdoLIwpmF5PwQ0m7LU3Tt--GV2nd_5SC8EZJSQLPD8KBP9zhpj04KKFvjcj-DlqoigXilOpMvrsDnrh5zDmeJmSTLGK44VaHygbfIwB2uvHEKyX8vRSnl7K00t5eeDpzQjX-N-2MsAOQPD7bOatg7S_4f0v2R__m_r85dPrSyq5y3-pNJaM4JorhvWVm45SkmsX4wz6D3Jb_q7bbxUzzOg</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Chapman, Phillip D.</creator><creator>Bradley, Samual P.</creator><creator>Haught, Erica J.</creator><creator>Riggs, Kassandra E.</creator><creator>Haffar, Mouaz M.</creator><creator>Daly, Kevin C.</creator><creator>Dacks, Andrew M.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6805-4211</orcidid></search><sort><creationdate>20170726</creationdate><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><author>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>Animals</topic><topic>Antennae</topic><topic>Arthropod</topic><topic>Arthropods</topic><topic>Biomechanics</topic><topic>Butterflies & moths</topic><topic>Circuits</topic><topic>Crustaceans</topic><topic>Discharge</topic><topic>Evolution</topic><topic>Exaptation</topic><topic>Flight</topic><topic>Flight, Animal</topic><topic>Histamine</topic><topic>Information systems</topic><topic>Insects</topic><topic>Lobes</topic><topic>Manduca - physiology</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropil</topic><topic>Neuroscience And Cognition</topic><topic>Nose</topic><topic>Odor</topic><topic>Olfaction</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory pathways</topic><topic>Olfactory system</topic><topic>Oscillations</topic><topic>Sensory stimulation</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Wings</topic><topic>Wings, Animal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Phillip D.</creatorcontrib><creatorcontrib>Bradley, Samual P.</creatorcontrib><creatorcontrib>Haught, Erica J.</creatorcontrib><creatorcontrib>Riggs, Kassandra E.</creatorcontrib><creatorcontrib>Haffar, Mouaz M.</creatorcontrib><creatorcontrib>Daly, Kevin C.</creatorcontrib><creatorcontrib>Dacks, Andrew M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Phillip D.</au><au>Bradley, Samual P.</au><au>Haught, Erica J.</au><au>Riggs, Kassandra E.</au><au>Haffar, Mouaz M.</au><au>Daly, Kevin C.</au><au>Dacks, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>284</volume><issue>1859</issue><spage>20170339</spage><epage>20170339</epage><pages>20170339-20170339</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28747471</pmid><doi>10.1098/rspb.2017.0339</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-6805-4211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_proquest_miscellaneous_1924594289 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Air flow Animals Antennae Arthropod Arthropods Biomechanics Butterflies & moths Circuits Crustaceans Discharge Evolution Exaptation Flight Flight, Animal Histamine Information systems Insects Lobes Manduca - physiology Neural networks Neurons Neurons - physiology Neuropil Neuroscience And Cognition Nose Odor Olfaction Olfactory Bulb - physiology Olfactory pathways Olfactory system Oscillations Sensory stimulation Smell Smell - physiology Wings Wings, Animal |
title | Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-option%20of%20a%20motor-to-sensory%20histaminergic%20circuit%20correlates%20with%20insect%20flight%20biomechanics&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Chapman,%20Phillip%20D.&rft.date=2017-07-26&rft.volume=284&rft.issue=1859&rft.spage=20170339&rft.epage=20170339&rft.pages=20170339-20170339&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2017.0339&rft_dat=%3Cproquest_royal%3E1924594289%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983936409&rft_id=info:pmid/28747471&rfr_iscdi=true |