Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics

Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339
Hauptverfasser: Chapman, Phillip D., Bradley, Samual P., Haught, Erica J., Riggs, Kassandra E., Haffar, Mouaz M., Daly, Kevin C., Dacks, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20170339
container_issue 1859
container_start_page 20170339
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 284
creator Chapman, Phillip D.
Bradley, Samual P.
Haught, Erica J.
Riggs, Kassandra E.
Haffar, Mouaz M.
Daly, Kevin C.
Dacks, Andrew M.
description Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.
doi_str_mv 10.1098/rspb.2017.0339
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924594289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924594289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEotPCliWyxIZNBj8Te4MEI15SJRCPtfE4NxOXJA62UzT99TjMULWVQF5Ysr97jo9PUTwheE2wki9CnLZrikm9xoype8WK8JqUVAl-v1hhVdFSckFPitMYLzDGSkjxsDihsuZ5kVXxfeNLPyXnR-RbZNDgkw9l8mWEMfqwR52LyQxuhLBzFlkX7OwSsj4E6E2CiH651CE3RrAJtb3bdQltnR_AdmZ0Nj4qHrSmj_D4uJ8V396--bp5X55_fPdh8-q8tKKiqTQYOABYW1kJFKBiksuqsQJayxXGrFaWNkoAUGvqHJhvZd1wIvNJwzhmZ8XLg-40bwdoLIwpmF5PwQ0m7LU3Tt--GV2nd_5SC8EZJSQLPD8KBP9zhpj04KKFvjcj-DlqoigXilOpMvrsDnrh5zDmeJmSTLGK44VaHygbfIwB2uvHEKyX8vRSnl7K00t5eeDpzQjX-N-2MsAOQPD7bOatg7S_4f0v2R__m_r85dPrSyq5y3-pNJaM4JorhvWVm45SkmsX4wz6D3Jb_q7bbxUzzOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983936409</pqid></control><display><type>article</type><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</creator><creatorcontrib>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</creatorcontrib><description>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</description><edition>Royal Society (Great Britain)</edition><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.2017.0339</identifier><identifier>PMID: 28747471</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Air flow ; Animals ; Antennae ; Arthropod ; Arthropods ; Biomechanics ; Butterflies &amp; moths ; Circuits ; Crustaceans ; Discharge ; Evolution ; Exaptation ; Flight ; Flight, Animal ; Histamine ; Information systems ; Insects ; Lobes ; Manduca - physiology ; Neural networks ; Neurons ; Neurons - physiology ; Neuropil ; Neuroscience And Cognition ; Nose ; Odor ; Olfaction ; Olfactory Bulb - physiology ; Olfactory pathways ; Olfactory system ; Oscillations ; Sensory stimulation ; Smell ; Smell - physiology ; Wings ; Wings, Animal</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339</ispartof><rights>2017 The Authors.</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jul 26, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</citedby><cites>FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</cites><orcidid>0000-0002-6805-4211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543211/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543211/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28747471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Phillip D.</creatorcontrib><creatorcontrib>Bradley, Samual P.</creatorcontrib><creatorcontrib>Haught, Erica J.</creatorcontrib><creatorcontrib>Riggs, Kassandra E.</creatorcontrib><creatorcontrib>Haffar, Mouaz M.</creatorcontrib><creatorcontrib>Daly, Kevin C.</creatorcontrib><creatorcontrib>Dacks, Andrew M.</creatorcontrib><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc Biol Sci</addtitle><description>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</description><subject>Air flow</subject><subject>Animals</subject><subject>Antennae</subject><subject>Arthropod</subject><subject>Arthropods</subject><subject>Biomechanics</subject><subject>Butterflies &amp; moths</subject><subject>Circuits</subject><subject>Crustaceans</subject><subject>Discharge</subject><subject>Evolution</subject><subject>Exaptation</subject><subject>Flight</subject><subject>Flight, Animal</subject><subject>Histamine</subject><subject>Information systems</subject><subject>Insects</subject><subject>Lobes</subject><subject>Manduca - physiology</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuropil</subject><subject>Neuroscience And Cognition</subject><subject>Nose</subject><subject>Odor</subject><subject>Olfaction</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory pathways</subject><subject>Olfactory system</subject><subject>Oscillations</subject><subject>Sensory stimulation</subject><subject>Smell</subject><subject>Smell - physiology</subject><subject>Wings</subject><subject>Wings, Animal</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhSMEotPCliWyxIZNBj8Te4MEI15SJRCPtfE4NxOXJA62UzT99TjMULWVQF5Ysr97jo9PUTwheE2wki9CnLZrikm9xoype8WK8JqUVAl-v1hhVdFSckFPitMYLzDGSkjxsDihsuZ5kVXxfeNLPyXnR-RbZNDgkw9l8mWEMfqwR52LyQxuhLBzFlkX7OwSsj4E6E2CiH651CE3RrAJtb3bdQltnR_AdmZ0Nj4qHrSmj_D4uJ8V396--bp5X55_fPdh8-q8tKKiqTQYOABYW1kJFKBiksuqsQJayxXGrFaWNkoAUGvqHJhvZd1wIvNJwzhmZ8XLg-40bwdoLIwpmF5PwQ0m7LU3Tt--GV2nd_5SC8EZJSQLPD8KBP9zhpj04KKFvjcj-DlqoigXilOpMvrsDnrh5zDmeJmSTLGK44VaHygbfIwB2uvHEKyX8vRSnl7K00t5eeDpzQjX-N-2MsAOQPD7bOatg7S_4f0v2R__m_r85dPrSyq5y3-pNJaM4JorhvWVm45SkmsX4wz6D3Jb_q7bbxUzzOg</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Chapman, Phillip D.</creator><creator>Bradley, Samual P.</creator><creator>Haught, Erica J.</creator><creator>Riggs, Kassandra E.</creator><creator>Haffar, Mouaz M.</creator><creator>Daly, Kevin C.</creator><creator>Dacks, Andrew M.</creator><general>The Royal Society</general><general>The Royal Society Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6805-4211</orcidid></search><sort><creationdate>20170726</creationdate><title>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</title><author>Chapman, Phillip D. ; Bradley, Samual P. ; Haught, Erica J. ; Riggs, Kassandra E. ; Haffar, Mouaz M. ; Daly, Kevin C. ; Dacks, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-a0e4eeecc6c8e2ee638486dc5efc4900379c2d95ee2ca72014b87d4185eed3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>Animals</topic><topic>Antennae</topic><topic>Arthropod</topic><topic>Arthropods</topic><topic>Biomechanics</topic><topic>Butterflies &amp; moths</topic><topic>Circuits</topic><topic>Crustaceans</topic><topic>Discharge</topic><topic>Evolution</topic><topic>Exaptation</topic><topic>Flight</topic><topic>Flight, Animal</topic><topic>Histamine</topic><topic>Information systems</topic><topic>Insects</topic><topic>Lobes</topic><topic>Manduca - physiology</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuropil</topic><topic>Neuroscience And Cognition</topic><topic>Nose</topic><topic>Odor</topic><topic>Olfaction</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory pathways</topic><topic>Olfactory system</topic><topic>Oscillations</topic><topic>Sensory stimulation</topic><topic>Smell</topic><topic>Smell - physiology</topic><topic>Wings</topic><topic>Wings, Animal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Phillip D.</creatorcontrib><creatorcontrib>Bradley, Samual P.</creatorcontrib><creatorcontrib>Haught, Erica J.</creatorcontrib><creatorcontrib>Riggs, Kassandra E.</creatorcontrib><creatorcontrib>Haffar, Mouaz M.</creatorcontrib><creatorcontrib>Daly, Kevin C.</creatorcontrib><creatorcontrib>Dacks, Andrew M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Phillip D.</au><au>Bradley, Samual P.</au><au>Haught, Erica J.</au><au>Riggs, Kassandra E.</au><au>Haffar, Mouaz M.</au><au>Daly, Kevin C.</au><au>Dacks, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc Biol Sci</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>284</volume><issue>1859</issue><spage>20170339</spage><epage>20170339</epage><pages>20170339-20170339</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>28747471</pmid><doi>10.1098/rspb.2017.0339</doi><tpages>1</tpages><edition>Royal Society (Great Britain)</edition><orcidid>https://orcid.org/0000-0002-6805-4211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2017-07, Vol.284 (1859), p.20170339-20170339
issn 0962-8452
1471-2954
language eng
recordid cdi_proquest_miscellaneous_1924594289
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Air flow
Animals
Antennae
Arthropod
Arthropods
Biomechanics
Butterflies & moths
Circuits
Crustaceans
Discharge
Evolution
Exaptation
Flight
Flight, Animal
Histamine
Information systems
Insects
Lobes
Manduca - physiology
Neural networks
Neurons
Neurons - physiology
Neuropil
Neuroscience And Cognition
Nose
Odor
Olfaction
Olfactory Bulb - physiology
Olfactory pathways
Olfactory system
Oscillations
Sensory stimulation
Smell
Smell - physiology
Wings
Wings, Animal
title Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-option%20of%20a%20motor-to-sensory%20histaminergic%20circuit%20correlates%20with%20insect%20flight%20biomechanics&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Chapman,%20Phillip%20D.&rft.date=2017-07-26&rft.volume=284&rft.issue=1859&rft.spage=20170339&rft.epage=20170339&rft.pages=20170339-20170339&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2017.0339&rft_dat=%3Cproquest_royal%3E1924594289%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983936409&rft_id=info:pmid/28747471&rfr_iscdi=true