Effects of additional data on Bayesian clustering

Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-10, Vol.94, p.86-95
1. Verfasser: Yamazaki, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue
container_start_page 86
container_title Neural networks
container_volume 94
creator Yamazaki, Keisuke
description Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.
doi_str_mv 10.1016/j.neunet.2017.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924589733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801730151X</els_id><sourcerecordid>1924589733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZhHDt-bJCgKg-pEhtYW649Qa7SpNgJUv-eVC0sWc3m3Hs1h5BrCgUFKu7WRYtDi31RApUFiAJodUKmVEmdl1KVp2QKSrNcgIIJuUhpDQBCcXZOJqWSVSWonBK6qGt0fcq6OrPehz50rW0yb3ubdW32aHeYgm0z1wypxxjaz0tyVtsm4dXxzsjH0-J9_pIv355f5w_L3PFS9TlnyLwD6i1nlfdKelYqxkFXFBVSzle8YlJ7LRQgVZaWwITyzldKS6s5m5HbQ-82dl8Dpt5sQnLYNLbFbkiG6pLvWcZGlB9QF7uUItZmG8PGxp2hYPayzNocZJm9LAPCjLLG2M1xYVht0P-Ffu2MwP0BwPHP74DRJBewdehDHKUZ34X_F34A7E96ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924589733</pqid></control><display><type>article</type><title>Effects of additional data on Bayesian clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yamazaki, Keisuke</creator><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><description>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2017.06.015</identifier><identifier>PMID: 28755617</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bayes Theorem ; Cluster Analysis ; Hierarchical parametric models ; Latent variable estimation ; Models, Statistical ; Semi-supervised learning ; Supervised Machine Learning ; Unsupervised learning</subject><ispartof>Neural networks, 2017-10, Vol.94, p.86-95</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</citedby><cites>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089360801730151X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28755617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><title>Effects of additional data on Bayesian clustering</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</description><subject>Bayes Theorem</subject><subject>Cluster Analysis</subject><subject>Hierarchical parametric models</subject><subject>Latent variable estimation</subject><subject>Models, Statistical</subject><subject>Semi-supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Unsupervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZhHDt-bJCgKg-pEhtYW649Qa7SpNgJUv-eVC0sWc3m3Hs1h5BrCgUFKu7WRYtDi31RApUFiAJodUKmVEmdl1KVp2QKSrNcgIIJuUhpDQBCcXZOJqWSVSWonBK6qGt0fcq6OrPehz50rW0yb3ubdW32aHeYgm0z1wypxxjaz0tyVtsm4dXxzsjH0-J9_pIv355f5w_L3PFS9TlnyLwD6i1nlfdKelYqxkFXFBVSzle8YlJ7LRQgVZaWwITyzldKS6s5m5HbQ-82dl8Dpt5sQnLYNLbFbkiG6pLvWcZGlB9QF7uUItZmG8PGxp2hYPayzNocZJm9LAPCjLLG2M1xYVht0P-Ffu2MwP0BwPHP74DRJBewdehDHKUZ34X_F34A7E96ug</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yamazaki, Keisuke</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Effects of additional data on Bayesian clustering</title><author>Yamazaki, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes Theorem</topic><topic>Cluster Analysis</topic><topic>Hierarchical parametric models</topic><topic>Latent variable estimation</topic><topic>Models, Statistical</topic><topic>Semi-supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of additional data on Bayesian clustering</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-10</date><risdate>2017</risdate><volume>94</volume><spage>86</spage><epage>95</epage><pages>86-95</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28755617</pmid><doi>10.1016/j.neunet.2017.06.015</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2017-10, Vol.94, p.86-95
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1924589733
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bayes Theorem
Cluster Analysis
Hierarchical parametric models
Latent variable estimation
Models, Statistical
Semi-supervised learning
Supervised Machine Learning
Unsupervised learning
title Effects of additional data on Bayesian clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20additional%20data%20on%20Bayesian%20clustering&rft.jtitle=Neural%20networks&rft.au=Yamazaki,%20Keisuke&rft.date=2017-10&rft.volume=94&rft.spage=86&rft.epage=95&rft.pages=86-95&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2017.06.015&rft_dat=%3Cproquest_cross%3E1924589733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924589733&rft_id=info:pmid/28755617&rft_els_id=S089360801730151X&rfr_iscdi=true