Effects of additional data on Bayesian clustering
Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation...
Gespeichert in:
Veröffentlicht in: | Neural networks 2017-10, Vol.94, p.86-95 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | Neural networks |
container_volume | 94 |
creator | Yamazaki, Keisuke |
description | Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. |
doi_str_mv | 10.1016/j.neunet.2017.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1924589733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801730151X</els_id><sourcerecordid>1924589733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZhHDt-bJCgKg-pEhtYW649Qa7SpNgJUv-eVC0sWc3m3Hs1h5BrCgUFKu7WRYtDi31RApUFiAJodUKmVEmdl1KVp2QKSrNcgIIJuUhpDQBCcXZOJqWSVSWonBK6qGt0fcq6OrPehz50rW0yb3ubdW32aHeYgm0z1wypxxjaz0tyVtsm4dXxzsjH0-J9_pIv355f5w_L3PFS9TlnyLwD6i1nlfdKelYqxkFXFBVSzle8YlJ7LRQgVZaWwITyzldKS6s5m5HbQ-82dl8Dpt5sQnLYNLbFbkiG6pLvWcZGlB9QF7uUItZmG8PGxp2hYPayzNocZJm9LAPCjLLG2M1xYVht0P-Ffu2MwP0BwPHP74DRJBewdehDHKUZ34X_F34A7E96ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924589733</pqid></control><display><type>article</type><title>Effects of additional data on Bayesian clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yamazaki, Keisuke</creator><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><description>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2017.06.015</identifier><identifier>PMID: 28755617</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bayes Theorem ; Cluster Analysis ; Hierarchical parametric models ; Latent variable estimation ; Models, Statistical ; Semi-supervised learning ; Supervised Machine Learning ; Unsupervised learning</subject><ispartof>Neural networks, 2017-10, Vol.94, p.86-95</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</citedby><cites>FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089360801730151X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28755617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><title>Effects of additional data on Bayesian clustering</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</description><subject>Bayes Theorem</subject><subject>Cluster Analysis</subject><subject>Hierarchical parametric models</subject><subject>Latent variable estimation</subject><subject>Models, Statistical</subject><subject>Semi-supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Unsupervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZhHDt-bJCgKg-pEhtYW649Qa7SpNgJUv-eVC0sWc3m3Hs1h5BrCgUFKu7WRYtDi31RApUFiAJodUKmVEmdl1KVp2QKSrNcgIIJuUhpDQBCcXZOJqWSVSWonBK6qGt0fcq6OrPehz50rW0yb3ubdW32aHeYgm0z1wypxxjaz0tyVtsm4dXxzsjH0-J9_pIv355f5w_L3PFS9TlnyLwD6i1nlfdKelYqxkFXFBVSzle8YlJ7LRQgVZaWwITyzldKS6s5m5HbQ-82dl8Dpt5sQnLYNLbFbkiG6pLvWcZGlB9QF7uUItZmG8PGxp2hYPayzNocZJm9LAPCjLLG2M1xYVht0P-Ffu2MwP0BwPHP74DRJBewdehDHKUZ34X_F34A7E96ug</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yamazaki, Keisuke</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Effects of additional data on Bayesian clustering</title><author>Yamazaki, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-43e3dc01da435dd87d328340951e8e144b45379d9680e18a120368dcd5897a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes Theorem</topic><topic>Cluster Analysis</topic><topic>Hierarchical parametric models</topic><topic>Latent variable estimation</topic><topic>Models, Statistical</topic><topic>Semi-supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of additional data on Bayesian clustering</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-10</date><risdate>2017</risdate><volume>94</volume><spage>86</spage><epage>95</epage><pages>86-95</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28755617</pmid><doi>10.1016/j.neunet.2017.06.015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2017-10, Vol.94, p.86-95 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1924589733 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bayes Theorem Cluster Analysis Hierarchical parametric models Latent variable estimation Models, Statistical Semi-supervised learning Supervised Machine Learning Unsupervised learning |
title | Effects of additional data on Bayesian clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20additional%20data%20on%20Bayesian%20clustering&rft.jtitle=Neural%20networks&rft.au=Yamazaki,%20Keisuke&rft.date=2017-10&rft.volume=94&rft.spage=86&rft.epage=95&rft.pages=86-95&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2017.06.015&rft_dat=%3Cproquest_cross%3E1924589733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924589733&rft_id=info:pmid/28755617&rft_els_id=S089360801730151X&rfr_iscdi=true |