Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth
Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D coun...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-08, Vol.9 (32), p.27102-27110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27110 |
---|---|
container_issue | 32 |
container_start_page | 27102 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Zhang, Jia Xue, Ding-jiang Zhan, Xiaojun Li, Zha Zeng, Dawen Song, Huaibing |
description | Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures. |
doi_str_mv | 10.1021/acsami.7b04765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923744818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923744818</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</originalsourceid><addsrcrecordid>eNp1kMFu1DAURS0EoqWwZYm8REgZbMeJkyUamBapCKS2bKOX-KXj4tjFz2HUDeo_8Id8CUEzdMfq3SedexeHsZdSrKRQ8i0MBJNbmV5oU1eP2LFstS4aVanHD1nrI_aM6EaIulSiesqOVGN0JXR1zH5-xUSQnUd-Ef2cXQzFlxQHJELLL-5C3iI54nHkl7tYvHcTBlog8PzK5wR56wL_hHn511vwQ7zG4CwS30Tv486Fa75JEL79vv_1AwK3mBY67ZCfprjL2-fsyQie8MXhnrCrzYfL9Vlx_vn04_rdeQFlKXLRm1oLtBpG3TdN2dpaal3j2I6tUsL0lYXBVkaX0GCFPQ4ChDTGlq0aoe6H8oS93u_epvh9Rsrd5GhA7yFgnKmTrSqN1o1sFnS1R4cUiRKO3W1yE6S7Torur_Nu77w7OF8Krw7bcz-hfcD_SV6AN3tgKXY3cU6LPfrf2h_E_I_N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923744818</pqid></control><display><type>article</type><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><source>American Chemical Society Journals</source><creator>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</creator><creatorcontrib>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</creatorcontrib><description>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b04765</identifier><identifier>PMID: 28745045</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2017-08, Vol.9 (32), p.27102-27110</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</citedby><cites>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</cites><orcidid>0000-0003-0242-5179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b04765$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b04765$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Xue, Ding-jiang</creatorcontrib><creatorcontrib>Zhan, Xiaojun</creatorcontrib><creatorcontrib>Li, Zha</creatorcontrib><creatorcontrib>Zeng, Dawen</creatorcontrib><creatorcontrib>Song, Huaibing</creatorcontrib><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAURS0EoqWwZYm8REgZbMeJkyUamBapCKS2bKOX-KXj4tjFz2HUDeo_8Id8CUEzdMfq3SedexeHsZdSrKRQ8i0MBJNbmV5oU1eP2LFstS4aVanHD1nrI_aM6EaIulSiesqOVGN0JXR1zH5-xUSQnUd-Ef2cXQzFlxQHJELLL-5C3iI54nHkl7tYvHcTBlog8PzK5wR56wL_hHn511vwQ7zG4CwS30Tv486Fa75JEL79vv_1AwK3mBY67ZCfprjL2-fsyQie8MXhnrCrzYfL9Vlx_vn04_rdeQFlKXLRm1oLtBpG3TdN2dpaal3j2I6tUsL0lYXBVkaX0GCFPQ4ChDTGlq0aoe6H8oS93u_epvh9Rsrd5GhA7yFgnKmTrSqN1o1sFnS1R4cUiRKO3W1yE6S7Torur_Nu77w7OF8Krw7bcz-hfcD_SV6AN3tgKXY3cU6LPfrf2h_E_I_N</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Zhang, Jia</creator><creator>Xue, Ding-jiang</creator><creator>Zhan, Xiaojun</creator><creator>Li, Zha</creator><creator>Zeng, Dawen</creator><creator>Song, Huaibing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0242-5179</orcidid></search><sort><creationdate>20170816</creationdate><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><author>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Xue, Ding-jiang</creatorcontrib><creatorcontrib>Zhan, Xiaojun</creatorcontrib><creatorcontrib>Li, Zha</creatorcontrib><creatorcontrib>Zeng, Dawen</creatorcontrib><creatorcontrib>Song, Huaibing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jia</au><au>Xue, Ding-jiang</au><au>Zhan, Xiaojun</au><au>Li, Zha</au><au>Zeng, Dawen</au><au>Song, Huaibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-08-16</date><risdate>2017</risdate><volume>9</volume><issue>32</issue><spage>27102</spage><epage>27110</epage><pages>27102-27110</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28745045</pmid><doi>10.1021/acsami.7b04765</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0242-5179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-08, Vol.9 (32), p.27102-27110 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1923744818 |
source | American Chemical Society Journals |
title | Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Solution-Processed%20Synthesis%20of%20Two-Dimensional%20Ultrathin%20Metal%20Chalcogenides%20Following%20Frank%E2%80%93van%20der%20Merwe%20Growth&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Jia&rft.date=2017-08-16&rft.volume=9&rft.issue=32&rft.spage=27102&rft.epage=27110&rft.pages=27102-27110&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b04765&rft_dat=%3Cproquest_cross%3E1923744818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923744818&rft_id=info:pmid/28745045&rfr_iscdi=true |