Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth

Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D coun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-08, Vol.9 (32), p.27102-27110
Hauptverfasser: Zhang, Jia, Xue, Ding-jiang, Zhan, Xiaojun, Li, Zha, Zeng, Dawen, Song, Huaibing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27110
container_issue 32
container_start_page 27102
container_title ACS applied materials & interfaces
container_volume 9
creator Zhang, Jia
Xue, Ding-jiang
Zhan, Xiaojun
Li, Zha
Zeng, Dawen
Song, Huaibing
description Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.
doi_str_mv 10.1021/acsami.7b04765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923744818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923744818</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</originalsourceid><addsrcrecordid>eNp1kMFu1DAURS0EoqWwZYm8REgZbMeJkyUamBapCKS2bKOX-KXj4tjFz2HUDeo_8Id8CUEzdMfq3SedexeHsZdSrKRQ8i0MBJNbmV5oU1eP2LFstS4aVanHD1nrI_aM6EaIulSiesqOVGN0JXR1zH5-xUSQnUd-Ef2cXQzFlxQHJELLL-5C3iI54nHkl7tYvHcTBlog8PzK5wR56wL_hHn511vwQ7zG4CwS30Tv486Fa75JEL79vv_1AwK3mBY67ZCfprjL2-fsyQie8MXhnrCrzYfL9Vlx_vn04_rdeQFlKXLRm1oLtBpG3TdN2dpaal3j2I6tUsL0lYXBVkaX0GCFPQ4ChDTGlq0aoe6H8oS93u_epvh9Rsrd5GhA7yFgnKmTrSqN1o1sFnS1R4cUiRKO3W1yE6S7Torur_Nu77w7OF8Krw7bcz-hfcD_SV6AN3tgKXY3cU6LPfrf2h_E_I_N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923744818</pqid></control><display><type>article</type><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><source>American Chemical Society Journals</source><creator>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</creator><creatorcontrib>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</creatorcontrib><description>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b04765</identifier><identifier>PMID: 28745045</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-08, Vol.9 (32), p.27102-27110</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</citedby><cites>FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</cites><orcidid>0000-0003-0242-5179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b04765$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b04765$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28745045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Xue, Ding-jiang</creatorcontrib><creatorcontrib>Zhan, Xiaojun</creatorcontrib><creatorcontrib>Li, Zha</creatorcontrib><creatorcontrib>Zeng, Dawen</creatorcontrib><creatorcontrib>Song, Huaibing</creatorcontrib><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAURS0EoqWwZYm8REgZbMeJkyUamBapCKS2bKOX-KXj4tjFz2HUDeo_8Id8CUEzdMfq3SedexeHsZdSrKRQ8i0MBJNbmV5oU1eP2LFstS4aVanHD1nrI_aM6EaIulSiesqOVGN0JXR1zH5-xUSQnUd-Ef2cXQzFlxQHJELLL-5C3iI54nHkl7tYvHcTBlog8PzK5wR56wL_hHn511vwQ7zG4CwS30Tv486Fa75JEL79vv_1AwK3mBY67ZCfprjL2-fsyQie8MXhnrCrzYfL9Vlx_vn04_rdeQFlKXLRm1oLtBpG3TdN2dpaal3j2I6tUsL0lYXBVkaX0GCFPQ4ChDTGlq0aoe6H8oS93u_epvh9Rsrd5GhA7yFgnKmTrSqN1o1sFnS1R4cUiRKO3W1yE6S7Torur_Nu77w7OF8Krw7bcz-hfcD_SV6AN3tgKXY3cU6LPfrf2h_E_I_N</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Zhang, Jia</creator><creator>Xue, Ding-jiang</creator><creator>Zhan, Xiaojun</creator><creator>Li, Zha</creator><creator>Zeng, Dawen</creator><creator>Song, Huaibing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0242-5179</orcidid></search><sort><creationdate>20170816</creationdate><title>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</title><author>Zhang, Jia ; Xue, Ding-jiang ; Zhan, Xiaojun ; Li, Zha ; Zeng, Dawen ; Song, Huaibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-b7640ed4af4b8839d61446ef9f92207b5dacd5743a8e5ebec0a0177d392fa6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Xue, Ding-jiang</creatorcontrib><creatorcontrib>Zhan, Xiaojun</creatorcontrib><creatorcontrib>Li, Zha</creatorcontrib><creatorcontrib>Zeng, Dawen</creatorcontrib><creatorcontrib>Song, Huaibing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jia</au><au>Xue, Ding-jiang</au><au>Zhan, Xiaojun</au><au>Li, Zha</au><au>Zeng, Dawen</au><au>Song, Huaibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-08-16</date><risdate>2017</risdate><volume>9</volume><issue>32</issue><spage>27102</spage><epage>27110</epage><pages>27102-27110</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28745045</pmid><doi>10.1021/acsami.7b04765</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0242-5179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-08, Vol.9 (32), p.27102-27110
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1923744818
source American Chemical Society Journals
title Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Solution-Processed%20Synthesis%20of%20Two-Dimensional%20Ultrathin%20Metal%20Chalcogenides%20Following%20Frank%E2%80%93van%20der%20Merwe%20Growth&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Jia&rft.date=2017-08-16&rft.volume=9&rft.issue=32&rft.spage=27102&rft.epage=27110&rft.pages=27102-27110&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b04765&rft_dat=%3Cproquest_cross%3E1923744818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923744818&rft_id=info:pmid/28745045&rfr_iscdi=true