Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy

Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-08, Vol.11 (8), p.8018-8025
Hauptverfasser: Lu, Yue, Geng, Jiguo, Wang, Kuan, Zhang, Wei, Ding, Wenqiang, Zhang, Zhenhua, Xie, Shaohua, Dai, Hongxing, Chen, Fu-Rong, Sui, Manling
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8025
container_issue 8
container_start_page 8018
container_title ACS nano
container_volume 11
creator Lu, Yue
Geng, Jiguo
Wang, Kuan
Zhang, Wei
Ding, Wenqiang
Zhang, Zhenhua
Xie, Shaohua
Dai, Hongxing
Chen, Fu-Rong
Sui, Manling
description Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.
doi_str_mv 10.1021/acsnano.7b02656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923111901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923111901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EolCY2ZBHJNRix3ESj1DKh2jVARBskeM8g1Eat7Yjkf8eVy1sTO8NvzvdHUJnlIwpSeiVVL6VrR3nFUkynu2hIypYNiJF9r7_93M6QMfefxHC8yLPDtEgKXJWUJ4eoX5ua6N7037g585pqQBPPmFpfHA9thrPIcgGL75NDR5r6_CNtT5s8FvjvW26YGyLn0wLwSiPTYvfZACHqx7PzLozNZ5A0-BpAyq4SM6NctYru-pP0IGWjYfT3R2i17vpy-RhNFvcP06uZyPJGAujnHCV0iSF2IPrtBAFcF5nCWEJJCKtABjUJK8UyVNeCNBScCaZFhwKoYCxIbrY-q6cXXfgQxnbqRhKtmA7X1KRMEqpIDSiV1t0k9E70OXKmaV0fUlJudm73O1d7vaOivOdeVctof7jfweOwOUWiMryy3aujV3_tfsB2OCMvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923111901</pqid></control><display><type>article</type><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><source>American Chemical Society Journals</source><creator>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</creator><creatorcontrib>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</creatorcontrib><description>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b02656</identifier><identifier>PMID: 28738154</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-08, Vol.11 (8), p.8018-8025</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</citedby><cites>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</cites><orcidid>0000-0003-1738-0348 ; 0000-0002-0415-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b02656$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b02656$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28738154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Geng, Jiguo</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ding, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Xie, Shaohua</creatorcontrib><creatorcontrib>Dai, Hongxing</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EolCY2ZBHJNRix3ESj1DKh2jVARBskeM8g1Eat7Yjkf8eVy1sTO8NvzvdHUJnlIwpSeiVVL6VrR3nFUkynu2hIypYNiJF9r7_93M6QMfefxHC8yLPDtEgKXJWUJ4eoX5ua6N7037g585pqQBPPmFpfHA9thrPIcgGL75NDR5r6_CNtT5s8FvjvW26YGyLn0wLwSiPTYvfZACHqx7PzLozNZ5A0-BpAyq4SM6NctYru-pP0IGWjYfT3R2i17vpy-RhNFvcP06uZyPJGAujnHCV0iSF2IPrtBAFcF5nCWEJJCKtABjUJK8UyVNeCNBScCaZFhwKoYCxIbrY-q6cXXfgQxnbqRhKtmA7X1KRMEqpIDSiV1t0k9E70OXKmaV0fUlJudm73O1d7vaOivOdeVctof7jfweOwOUWiMryy3aujV3_tfsB2OCMvQ</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Lu, Yue</creator><creator>Geng, Jiguo</creator><creator>Wang, Kuan</creator><creator>Zhang, Wei</creator><creator>Ding, Wenqiang</creator><creator>Zhang, Zhenhua</creator><creator>Xie, Shaohua</creator><creator>Dai, Hongxing</creator><creator>Chen, Fu-Rong</creator><creator>Sui, Manling</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1738-0348</orcidid><orcidid>https://orcid.org/0000-0002-0415-5881</orcidid></search><sort><creationdate>20170822</creationdate><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><author>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Geng, Jiguo</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ding, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Xie, Shaohua</creatorcontrib><creatorcontrib>Dai, Hongxing</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yue</au><au>Geng, Jiguo</au><au>Wang, Kuan</au><au>Zhang, Wei</au><au>Ding, Wenqiang</au><au>Zhang, Zhenhua</au><au>Xie, Shaohua</au><au>Dai, Hongxing</au><au>Chen, Fu-Rong</au><au>Sui, Manling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-08-22</date><risdate>2017</risdate><volume>11</volume><issue>8</issue><spage>8018</spage><epage>8025</epage><pages>8018-8025</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28738154</pmid><doi>10.1021/acsnano.7b02656</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1738-0348</orcidid><orcidid>https://orcid.org/0000-0002-0415-5881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-08, Vol.11 (8), p.8018-8025
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1923111901
source American Chemical Society Journals
title Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifying%20Surface%20Chemistry%20of%20Metal%20Oxides%20for%20Boosting%20Dissolution%20Kinetics%20in%20Water%20by%20Liquid%20Cell%20Electron%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Lu,%20Yue&rft.date=2017-08-22&rft.volume=11&rft.issue=8&rft.spage=8018&rft.epage=8025&rft.pages=8018-8025&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b02656&rft_dat=%3Cproquest_cross%3E1923111901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923111901&rft_id=info:pmid/28738154&rfr_iscdi=true