Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy
Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of o...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-08, Vol.11 (8), p.8018-8025 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8025 |
---|---|
container_issue | 8 |
container_start_page | 8018 |
container_title | ACS nano |
container_volume | 11 |
creator | Lu, Yue Geng, Jiguo Wang, Kuan Zhang, Wei Ding, Wenqiang Zhang, Zhenhua Xie, Shaohua Dai, Hongxing Chen, Fu-Rong Sui, Manling |
description | Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication. |
doi_str_mv | 10.1021/acsnano.7b02656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923111901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923111901</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EolCY2ZBHJNRix3ESj1DKh2jVARBskeM8g1Eat7Yjkf8eVy1sTO8NvzvdHUJnlIwpSeiVVL6VrR3nFUkynu2hIypYNiJF9r7_93M6QMfefxHC8yLPDtEgKXJWUJ4eoX5ua6N7037g585pqQBPPmFpfHA9thrPIcgGL75NDR5r6_CNtT5s8FvjvW26YGyLn0wLwSiPTYvfZACHqx7PzLozNZ5A0-BpAyq4SM6NctYru-pP0IGWjYfT3R2i17vpy-RhNFvcP06uZyPJGAujnHCV0iSF2IPrtBAFcF5nCWEJJCKtABjUJK8UyVNeCNBScCaZFhwKoYCxIbrY-q6cXXfgQxnbqRhKtmA7X1KRMEqpIDSiV1t0k9E70OXKmaV0fUlJudm73O1d7vaOivOdeVctof7jfweOwOUWiMryy3aujV3_tfsB2OCMvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923111901</pqid></control><display><type>article</type><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><source>American Chemical Society Journals</source><creator>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</creator><creatorcontrib>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</creatorcontrib><description>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b02656</identifier><identifier>PMID: 28738154</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-08, Vol.11 (8), p.8018-8025</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</citedby><cites>FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</cites><orcidid>0000-0003-1738-0348 ; 0000-0002-0415-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b02656$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b02656$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28738154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Geng, Jiguo</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ding, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Xie, Shaohua</creatorcontrib><creatorcontrib>Dai, Hongxing</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EolCY2ZBHJNRix3ESj1DKh2jVARBskeM8g1Eat7Yjkf8eVy1sTO8NvzvdHUJnlIwpSeiVVL6VrR3nFUkynu2hIypYNiJF9r7_93M6QMfefxHC8yLPDtEgKXJWUJ4eoX5ua6N7037g585pqQBPPmFpfHA9thrPIcgGL75NDR5r6_CNtT5s8FvjvW26YGyLn0wLwSiPTYvfZACHqx7PzLozNZ5A0-BpAyq4SM6NctYru-pP0IGWjYfT3R2i17vpy-RhNFvcP06uZyPJGAujnHCV0iSF2IPrtBAFcF5nCWEJJCKtABjUJK8UyVNeCNBScCaZFhwKoYCxIbrY-q6cXXfgQxnbqRhKtmA7X1KRMEqpIDSiV1t0k9E70OXKmaV0fUlJudm73O1d7vaOivOdeVctof7jfweOwOUWiMryy3aujV3_tfsB2OCMvQ</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Lu, Yue</creator><creator>Geng, Jiguo</creator><creator>Wang, Kuan</creator><creator>Zhang, Wei</creator><creator>Ding, Wenqiang</creator><creator>Zhang, Zhenhua</creator><creator>Xie, Shaohua</creator><creator>Dai, Hongxing</creator><creator>Chen, Fu-Rong</creator><creator>Sui, Manling</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1738-0348</orcidid><orcidid>https://orcid.org/0000-0002-0415-5881</orcidid></search><sort><creationdate>20170822</creationdate><title>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</title><author>Lu, Yue ; Geng, Jiguo ; Wang, Kuan ; Zhang, Wei ; Ding, Wenqiang ; Zhang, Zhenhua ; Xie, Shaohua ; Dai, Hongxing ; Chen, Fu-Rong ; Sui, Manling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-705c4124e0855f4898e55d62032e294bee3ed07bc074589efa953a3f95e89ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Geng, Jiguo</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ding, Wenqiang</creatorcontrib><creatorcontrib>Zhang, Zhenhua</creatorcontrib><creatorcontrib>Xie, Shaohua</creatorcontrib><creatorcontrib>Dai, Hongxing</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yue</au><au>Geng, Jiguo</au><au>Wang, Kuan</au><au>Zhang, Wei</au><au>Ding, Wenqiang</au><au>Zhang, Zhenhua</au><au>Xie, Shaohua</au><au>Dai, Hongxing</au><au>Chen, Fu-Rong</au><au>Sui, Manling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-08-22</date><risdate>2017</risdate><volume>11</volume><issue>8</issue><spage>8018</spage><epage>8025</epage><pages>8018-8025</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16–19 orders of magnitude, equivalent to a reduction of 0.97–1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28738154</pmid><doi>10.1021/acsnano.7b02656</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1738-0348</orcidid><orcidid>https://orcid.org/0000-0002-0415-5881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-08, Vol.11 (8), p.8018-8025 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1923111901 |
source | American Chemical Society Journals |
title | Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifying%20Surface%20Chemistry%20of%20Metal%20Oxides%20for%20Boosting%20Dissolution%20Kinetics%20in%20Water%20by%20Liquid%20Cell%20Electron%20Microscopy&rft.jtitle=ACS%20nano&rft.au=Lu,%20Yue&rft.date=2017-08-22&rft.volume=11&rft.issue=8&rft.spage=8018&rft.epage=8025&rft.pages=8018-8025&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b02656&rft_dat=%3Cproquest_cross%3E1923111901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923111901&rft_id=info:pmid/28738154&rfr_iscdi=true |