Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage

2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-10, Vol.29 (37), p.n/a
Hauptverfasser: Zhao, Meng‐Qiang, Xie, Xiuqiang, Ren, Chang E., Makaryan, Taron, Anasori, Babak, Wang, Guoxiu, Gogotsi, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Zhao, Meng‐Qiang
Xie, Xiuqiang
Ren, Chang E.
Makaryan, Taron
Anasori, Babak
Wang, Guoxiu
Gogotsi, Yury
description 2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free‐standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium‐ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high‐performance MXene‐based materials for energy storage, catalysis, environmental, and biomedical applications. Hollow Ti3C2Tx spheres and 3D macroporous MXene films are fabricated using a sacrificial template approach. The 3D MXene films are free‐standing, flexible, and highly conductive. They can serve directly as electrodes for Na‐ion storage and exhibit high capacities accompanied with excellent stabilities and rate performance.
doi_str_mv 10.1002/adma.201702410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923107720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1946105067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4390-c3f37ce77358c272f1330bf86b833ec66f56f25e2eeae72909e2a05e903ff2b13</originalsourceid><addsrcrecordid>eNqF0LFOwzAQBmALgaAUVkYUiYUl5WwndjxWlNJKDQyAxBY56RkKSVxsqoqNR-AZeRJctYDEwnTLd7_ufkKOKPQoADvT00b3GFAJLKGwRTo0ZTROQKXbpAOKp7ESSbZH9r1_AgAlQOySPZbJJKxkHZKPbF3bZZTfY4vRzfwRHfpIt9OID6JcV87OrbMLvwFDpxtcWvfsI2NddKU_3z_Gto1uXq3TD3hAdoyuPR5uZpfcDS9uz0fx5PpyfN6fxFXCFcQVN1xWKCVPs4pJZijnUJpMlBnnWAlhUmFYigxRo2QKFDINKSrgxrCS8i45XefOnX1ZoH8tmpmvsK51i-HYgirGKUjJINCTP_TJLlwbrgsqERRSEDKo3lqFh713aIq5mzXavRUUilXRxaro4qfosHC8iV2UDU5_-HezAag1WM5qfPsnrugP8v5v-Bfr-Ihq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946105067</pqid></control><display><type>article</type><title>Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Meng‐Qiang ; Xie, Xiuqiang ; Ren, Chang E. ; Makaryan, Taron ; Anasori, Babak ; Wang, Guoxiu ; Gogotsi, Yury</creator><creatorcontrib>Zhao, Meng‐Qiang ; Xie, Xiuqiang ; Ren, Chang E. ; Makaryan, Taron ; Anasori, Babak ; Wang, Guoxiu ; Gogotsi, Yury</creatorcontrib><description>2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free‐standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium‐ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high‐performance MXene‐based materials for energy storage, catalysis, environmental, and biomedical applications. Hollow Ti3C2Tx spheres and 3D macroporous MXene films are fabricated using a sacrificial template approach. The 3D MXene films are free‐standing, flexible, and highly conductive. They can serve directly as electrodes for Na‐ion storage and exhibit high capacities accompanied with excellent stabilities and rate performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201702410</identifier><identifier>PMID: 28741708</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D frameworks ; Biomedical materials ; Catalysis ; Electrochemical analysis ; Energy consumption ; Energy storage ; Ethanol ; Flakes ; hollow spheres ; Ion storage ; Lithium sulfur batteries ; Materials science ; Metal carbides ; MXene ; MXenes ; Na‐ion storage ; Performance enhancement ; Rechargeable batteries ; Sodium-ion batteries ; Storage batteries ; templates</subject><ispartof>Advanced materials (Weinheim), 2017-10, Vol.29 (37), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4390-c3f37ce77358c272f1330bf86b833ec66f56f25e2eeae72909e2a05e903ff2b13</citedby><cites>FETCH-LOGICAL-c4390-c3f37ce77358c272f1330bf86b833ec66f56f25e2eeae72909e2a05e903ff2b13</cites><orcidid>0000-0001-9423-4032 ; 0000-0002-0547-3144 ; 0000-0002-1955-253X ; 0000-0003-4295-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201702410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201702410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28741708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Meng‐Qiang</creatorcontrib><creatorcontrib>Xie, Xiuqiang</creatorcontrib><creatorcontrib>Ren, Chang E.</creatorcontrib><creatorcontrib>Makaryan, Taron</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free‐standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium‐ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high‐performance MXene‐based materials for energy storage, catalysis, environmental, and biomedical applications. Hollow Ti3C2Tx spheres and 3D macroporous MXene films are fabricated using a sacrificial template approach. The 3D MXene films are free‐standing, flexible, and highly conductive. They can serve directly as electrodes for Na‐ion storage and exhibit high capacities accompanied with excellent stabilities and rate performance.</description><subject>3D frameworks</subject><subject>Biomedical materials</subject><subject>Catalysis</subject><subject>Electrochemical analysis</subject><subject>Energy consumption</subject><subject>Energy storage</subject><subject>Ethanol</subject><subject>Flakes</subject><subject>hollow spheres</subject><subject>Ion storage</subject><subject>Lithium sulfur batteries</subject><subject>Materials science</subject><subject>Metal carbides</subject><subject>MXene</subject><subject>MXenes</subject><subject>Na‐ion storage</subject><subject>Performance enhancement</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>templates</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0LFOwzAQBmALgaAUVkYUiYUl5WwndjxWlNJKDQyAxBY56RkKSVxsqoqNR-AZeRJctYDEwnTLd7_ufkKOKPQoADvT00b3GFAJLKGwRTo0ZTROQKXbpAOKp7ESSbZH9r1_AgAlQOySPZbJJKxkHZKPbF3bZZTfY4vRzfwRHfpIt9OID6JcV87OrbMLvwFDpxtcWvfsI2NddKU_3z_Gto1uXq3TD3hAdoyuPR5uZpfcDS9uz0fx5PpyfN6fxFXCFcQVN1xWKCVPs4pJZijnUJpMlBnnWAlhUmFYigxRo2QKFDINKSrgxrCS8i45XefOnX1ZoH8tmpmvsK51i-HYgirGKUjJINCTP_TJLlwbrgsqERRSEDKo3lqFh713aIq5mzXavRUUilXRxaro4qfosHC8iV2UDU5_-HezAag1WM5qfPsnrugP8v5v-Bfr-Ihq</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Zhao, Meng‐Qiang</creator><creator>Xie, Xiuqiang</creator><creator>Ren, Chang E.</creator><creator>Makaryan, Taron</creator><creator>Anasori, Babak</creator><creator>Wang, Guoxiu</creator><creator>Gogotsi, Yury</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid></search><sort><creationdate>201710</creationdate><title>Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage</title><author>Zhao, Meng‐Qiang ; Xie, Xiuqiang ; Ren, Chang E. ; Makaryan, Taron ; Anasori, Babak ; Wang, Guoxiu ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4390-c3f37ce77358c272f1330bf86b833ec66f56f25e2eeae72909e2a05e903ff2b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D frameworks</topic><topic>Biomedical materials</topic><topic>Catalysis</topic><topic>Electrochemical analysis</topic><topic>Energy consumption</topic><topic>Energy storage</topic><topic>Ethanol</topic><topic>Flakes</topic><topic>hollow spheres</topic><topic>Ion storage</topic><topic>Lithium sulfur batteries</topic><topic>Materials science</topic><topic>Metal carbides</topic><topic>MXene</topic><topic>MXenes</topic><topic>Na‐ion storage</topic><topic>Performance enhancement</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>templates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Meng‐Qiang</creatorcontrib><creatorcontrib>Xie, Xiuqiang</creatorcontrib><creatorcontrib>Ren, Chang E.</creatorcontrib><creatorcontrib>Makaryan, Taron</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Meng‐Qiang</au><au>Xie, Xiuqiang</au><au>Ren, Chang E.</au><au>Makaryan, Taron</au><au>Anasori, Babak</au><au>Wang, Guoxiu</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-10</date><risdate>2017</risdate><volume>29</volume><issue>37</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free‐standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium‐ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high‐performance MXene‐based materials for energy storage, catalysis, environmental, and biomedical applications. Hollow Ti3C2Tx spheres and 3D macroporous MXene films are fabricated using a sacrificial template approach. The 3D MXene films are free‐standing, flexible, and highly conductive. They can serve directly as electrodes for Na‐ion storage and exhibit high capacities accompanied with excellent stabilities and rate performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28741708</pmid><doi>10.1002/adma.201702410</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-10, Vol.29 (37), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1923107720
source Wiley Online Library Journals Frontfile Complete
subjects 3D frameworks
Biomedical materials
Catalysis
Electrochemical analysis
Energy consumption
Energy storage
Ethanol
Flakes
hollow spheres
Ion storage
Lithium sulfur batteries
Materials science
Metal carbides
MXene
MXenes
Na‐ion storage
Performance enhancement
Rechargeable batteries
Sodium-ion batteries
Storage batteries
templates
title Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20MXene%20Spheres%20and%203D%20Macroporous%20MXene%20Frameworks%20for%20Na%E2%80%90Ion%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhao,%20Meng%E2%80%90Qiang&rft.date=2017-10&rft.volume=29&rft.issue=37&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201702410&rft_dat=%3Cproquest_cross%3E1946105067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1946105067&rft_id=info:pmid/28741708&rfr_iscdi=true