Impact of Interfacial Layers in Perovskite Solar Cells

Perovskite solar cells (PCSs) are composed of organic–inorganic lead halide perovskite as the light harvester. Since the first report on a long‐term‐durable, 9.7 % efficient, solid‐state perovskite solar cell, organic–inorganic halide perovskites have received considerable attention because of their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2017-10, Vol.10 (19), p.3687-3704
Hauptverfasser: Cho, An‐Na, Park, Nam‐Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3704
container_issue 19
container_start_page 3687
container_title ChemSusChem
container_volume 10
creator Cho, An‐Na
Park, Nam‐Gyu
description Perovskite solar cells (PCSs) are composed of organic–inorganic lead halide perovskite as the light harvester. Since the first report on a long‐term‐durable, 9.7 % efficient, solid‐state perovskite solar cell, organic–inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine‐doped tin oxide (FTO)/electron‐transport layer (ETL), ETL/perovskite, perovskite/hole‐transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain‐boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. Upping the face: Interfacial engineering in perovskite solar cells is beneficial to improving photovoltaic performance because of the effective charge collection by changing the work function and/or dipole moment and reducing trapping states and recombination by improving electronic coupling through chemical binding. Bifunctional organic materials or nonstoichiometric approaches are effective methods to passivate grain boundaries of perovskite films.
doi_str_mv 10.1002/cssc.201701095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1923107154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949424125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5165-8f2e0f6ce384fa8c285eedffac64ef69203da0d8c990f9b5c5e2acbbd68839443</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoVqtXj7LgxcvWSTZJk6MsfhQKClXwtmSzE9i6HzXZVfrv3dJawYunmcMz77w8hFxQmFAAdmNDsBMGdAoUtDggJ1RJHgvJ3w73e0JH5DSEJYAELeUxGTE1TaQWcELkrF4Z20Wti2ZNh94ZW5oqmps1-hCVTfSMvv0M72WH0aKtjI9SrKpwRo6cqQKe7-aYvN7fvaSP8fzpYZbezmMrqBSxcgzBSYuJ4s4oy5RALNzwRHJ0UjNICgOFslqD07mwApmxeV5IpRLNeTIm19vclW8_egxdVpfBDg1Mg20fMqpZQmFKxQa9-oMu2943Q7uB4pozTpkYqMmWsr4NwaPLVr6sjV9nFLKN0WxjNNsbHQ4ud7F9XmOxx38UDoDeAl9lhet_4rJ0sUh_w78BMQGBiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949424125</pqid></control><display><type>article</type><title>Impact of Interfacial Layers in Perovskite Solar Cells</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Cho, An‐Na ; Park, Nam‐Gyu</creator><creatorcontrib>Cho, An‐Na ; Park, Nam‐Gyu</creatorcontrib><description>Perovskite solar cells (PCSs) are composed of organic–inorganic lead halide perovskite as the light harvester. Since the first report on a long‐term‐durable, 9.7 % efficient, solid‐state perovskite solar cell, organic–inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine‐doped tin oxide (FTO)/electron‐transport layer (ETL), ETL/perovskite, perovskite/hole‐transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain‐boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. Upping the face: Interfacial engineering in perovskite solar cells is beneficial to improving photovoltaic performance because of the effective charge collection by changing the work function and/or dipole moment and reducing trapping states and recombination by improving electronic coupling through chemical binding. Bifunctional organic materials or nonstoichiometric approaches are effective methods to passivate grain boundaries of perovskite films.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201701095</identifier><identifier>PMID: 28736950</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Calcium Compounds - chemistry ; Crystal defects ; Electric Power Supplies ; Energy conversion efficiency ; Engineering ; Fluorine ; Grain boundaries ; Inorganic materials ; interfaces ; interfacial engineering ; Optoelectronics ; Oxides - chemistry ; perovskite ; Perovskites ; Photovoltaic cells ; Solar cells ; Solar Energy ; Surface Properties ; Titanium - chemistry ; Transport</subject><ispartof>ChemSusChem, 2017-10, Vol.10 (19), p.3687-3704</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5165-8f2e0f6ce384fa8c285eedffac64ef69203da0d8c990f9b5c5e2acbbd68839443</citedby><cites>FETCH-LOGICAL-c5165-8f2e0f6ce384fa8c285eedffac64ef69203da0d8c990f9b5c5e2acbbd68839443</cites><orcidid>0000-0003-2368-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201701095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201701095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28736950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, An‐Na</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><title>Impact of Interfacial Layers in Perovskite Solar Cells</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Perovskite solar cells (PCSs) are composed of organic–inorganic lead halide perovskite as the light harvester. Since the first report on a long‐term‐durable, 9.7 % efficient, solid‐state perovskite solar cell, organic–inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine‐doped tin oxide (FTO)/electron‐transport layer (ETL), ETL/perovskite, perovskite/hole‐transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain‐boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. Upping the face: Interfacial engineering in perovskite solar cells is beneficial to improving photovoltaic performance because of the effective charge collection by changing the work function and/or dipole moment and reducing trapping states and recombination by improving electronic coupling through chemical binding. Bifunctional organic materials or nonstoichiometric approaches are effective methods to passivate grain boundaries of perovskite films.</description><subject>Calcium Compounds - chemistry</subject><subject>Crystal defects</subject><subject>Electric Power Supplies</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Fluorine</subject><subject>Grain boundaries</subject><subject>Inorganic materials</subject><subject>interfaces</subject><subject>interfacial engineering</subject><subject>Optoelectronics</subject><subject>Oxides - chemistry</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solar Energy</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><subject>Transport</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoVqtXj7LgxcvWSTZJk6MsfhQKClXwtmSzE9i6HzXZVfrv3dJawYunmcMz77w8hFxQmFAAdmNDsBMGdAoUtDggJ1RJHgvJ3w73e0JH5DSEJYAELeUxGTE1TaQWcELkrF4Z20Wti2ZNh94ZW5oqmps1-hCVTfSMvv0M72WH0aKtjI9SrKpwRo6cqQKe7-aYvN7fvaSP8fzpYZbezmMrqBSxcgzBSYuJ4s4oy5RALNzwRHJ0UjNICgOFslqD07mwApmxeV5IpRLNeTIm19vclW8_egxdVpfBDg1Mg20fMqpZQmFKxQa9-oMu2943Q7uB4pozTpkYqMmWsr4NwaPLVr6sjV9nFLKN0WxjNNsbHQ4ud7F9XmOxx38UDoDeAl9lhet_4rJ0sUh_w78BMQGBiA</recordid><startdate>20171009</startdate><enddate>20171009</enddate><creator>Cho, An‐Na</creator><creator>Park, Nam‐Gyu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></search><sort><creationdate>20171009</creationdate><title>Impact of Interfacial Layers in Perovskite Solar Cells</title><author>Cho, An‐Na ; Park, Nam‐Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5165-8f2e0f6ce384fa8c285eedffac64ef69203da0d8c990f9b5c5e2acbbd68839443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calcium Compounds - chemistry</topic><topic>Crystal defects</topic><topic>Electric Power Supplies</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Fluorine</topic><topic>Grain boundaries</topic><topic>Inorganic materials</topic><topic>interfaces</topic><topic>interfacial engineering</topic><topic>Optoelectronics</topic><topic>Oxides - chemistry</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solar Energy</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, An‐Na</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, An‐Na</au><au>Park, Nam‐Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Interfacial Layers in Perovskite Solar Cells</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2017-10-09</date><risdate>2017</risdate><volume>10</volume><issue>19</issue><spage>3687</spage><epage>3704</epage><pages>3687-3704</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Perovskite solar cells (PCSs) are composed of organic–inorganic lead halide perovskite as the light harvester. Since the first report on a long‐term‐durable, 9.7 % efficient, solid‐state perovskite solar cell, organic–inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine‐doped tin oxide (FTO)/electron‐transport layer (ETL), ETL/perovskite, perovskite/hole‐transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain‐boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. Upping the face: Interfacial engineering in perovskite solar cells is beneficial to improving photovoltaic performance because of the effective charge collection by changing the work function and/or dipole moment and reducing trapping states and recombination by improving electronic coupling through chemical binding. Bifunctional organic materials or nonstoichiometric approaches are effective methods to passivate grain boundaries of perovskite films.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28736950</pmid><doi>10.1002/cssc.201701095</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2017-10, Vol.10 (19), p.3687-3704
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1923107154
source MEDLINE; Wiley Journals
subjects Calcium Compounds - chemistry
Crystal defects
Electric Power Supplies
Energy conversion efficiency
Engineering
Fluorine
Grain boundaries
Inorganic materials
interfaces
interfacial engineering
Optoelectronics
Oxides - chemistry
perovskite
Perovskites
Photovoltaic cells
Solar cells
Solar Energy
Surface Properties
Titanium - chemistry
Transport
title Impact of Interfacial Layers in Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Interfacial%20Layers%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ChemSusChem&rft.au=Cho,%20An%E2%80%90Na&rft.date=2017-10-09&rft.volume=10&rft.issue=19&rft.spage=3687&rft.epage=3704&rft.pages=3687-3704&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201701095&rft_dat=%3Cproquest_cross%3E1949424125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949424125&rft_id=info:pmid/28736950&rfr_iscdi=true