Confronting Multicollinearity in Ecological Multiple Regression

The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2003-11, Vol.84 (11), p.2809-2815
1. Verfasser: Graham, Michael H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2815
container_issue 11
container_start_page 2809
container_title Ecology (Durham)
container_volume 84
creator Graham, Michael H.
description The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables encumbers analyses and threatens their statistical and inferential interpretation. Using numerical simulations, I quantified the impact of multicollinearity on ecological multiple regression and found that even low levels of collinearity bias analyses (r ≥ 0.28 or r2≥ 0.08), causing (1) inaccurate model parameterization, (2) decreased statistical power, and (3) exclusion of significant predictor variables during model creation. Then, using real ecological data, I demonstrated the utility of various statistical techniques for enhancing the reliability and interpretation of ecological multiple regression in the presence of multicollinearity.
doi_str_mv 10.1890/02-3114
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19228856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3449952</jstor_id><sourcerecordid>3449952</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3079-b6d8030753c513a60c990d0132c313f2491c16f6809c79f9c5da11f185c7c653</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKv4BTwUQW-rM8lmNzmJlPoHFEG8eAoxzZaUNKnJFum3N7VFwblkyPzem-QRcopwhULCNdCKIdZ7ZICSyUpiC_tkAIC0kg0Xh-Qo5zmUwloMyM04hi7F0LswGz2vfO9M9N4Fq5Pr1yMXRpNyEWfOaL-dL70dvdpZsjm7GI7JQad9tie7c0je7iZv44fq6eX-cXz7VM0ZtLL6aKYCSseZ4ch0A0ZKmAIyahiyjtYSDTZdI0CaVnbS8KlG7FBw05qGsyG53NouU_xc2dyrhcvGeq-DjausUFIqBG8KeP4PnMdVCuVpipZ4ygK6cbvYQTqXf3VJB-OyWia30GmtkLOmRZCFq7fcl_N2_TcHtUlaAVWbpNVk_E4BmKgRqfiRnW1l89zH9CtjdS0lp-wbG0J6Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218968025</pqid></control><display><type>article</type><title>Confronting Multicollinearity in Ecological Multiple Regression</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Jstor Complete Legacy</source><creator>Graham, Michael H.</creator><creatorcontrib>Graham, Michael H.</creatorcontrib><description>The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables encumbers analyses and threatens their statistical and inferential interpretation. Using numerical simulations, I quantified the impact of multicollinearity on ecological multiple regression and found that even low levels of collinearity bias analyses (r ≥ 0.28 or r2≥ 0.08), causing (1) inaccurate model parameterization, (2) decreased statistical power, and (3) exclusion of significant predictor variables during model creation. Then, using real ecological data, I demonstrated the utility of various statistical techniques for enhancing the reliability and interpretation of ecological multiple regression in the presence of multicollinearity.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/02-3114</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecology Society of America</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; confounding factors ; Ecology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Methods and techniques (sampling, tagging, trapping, modelling...) ; multicollinearity ; multiple regression ; principal components regression ; sequential regression ; Statistical Report ; structural equation modeling</subject><ispartof>Ecology (Durham), 2003-11, Vol.84 (11), p.2809-2815</ispartof><rights>Copyright 2003 Ecological Society of America</rights><rights>2003 by the Ecological Society of America</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Ecological Society of America Nov 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3449952$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3449952$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27907,27908,45557,45558,58000,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15367109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, Michael H.</creatorcontrib><title>Confronting Multicollinearity in Ecological Multiple Regression</title><title>Ecology (Durham)</title><description>The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables encumbers analyses and threatens their statistical and inferential interpretation. Using numerical simulations, I quantified the impact of multicollinearity on ecological multiple regression and found that even low levels of collinearity bias analyses (r ≥ 0.28 or r2≥ 0.08), causing (1) inaccurate model parameterization, (2) decreased statistical power, and (3) exclusion of significant predictor variables during model creation. Then, using real ecological data, I demonstrated the utility of various statistical techniques for enhancing the reliability and interpretation of ecological multiple regression in the presence of multicollinearity.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>confounding factors</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>multicollinearity</subject><subject>multiple regression</subject><subject>principal components regression</subject><subject>sequential regression</subject><subject>Statistical Report</subject><subject>structural equation modeling</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LAzEQxYMoWKv4BTwUQW-rM8lmNzmJlPoHFEG8eAoxzZaUNKnJFum3N7VFwblkyPzem-QRcopwhULCNdCKIdZ7ZICSyUpiC_tkAIC0kg0Xh-Qo5zmUwloMyM04hi7F0LswGz2vfO9M9N4Fq5Pr1yMXRpNyEWfOaL-dL70dvdpZsjm7GI7JQad9tie7c0je7iZv44fq6eX-cXz7VM0ZtLL6aKYCSseZ4ch0A0ZKmAIyahiyjtYSDTZdI0CaVnbS8KlG7FBw05qGsyG53NouU_xc2dyrhcvGeq-DjausUFIqBG8KeP4PnMdVCuVpipZ4ygK6cbvYQTqXf3VJB-OyWia30GmtkLOmRZCFq7fcl_N2_TcHtUlaAVWbpNVk_E4BmKgRqfiRnW1l89zH9CtjdS0lp-wbG0J6Sw</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Graham, Michael H.</creator><general>Ecology Society of America</general><general>Ecological Society of America</general><scope>IQODW</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>200311</creationdate><title>Confronting Multicollinearity in Ecological Multiple Regression</title><author>Graham, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3079-b6d8030753c513a60c990d0132c313f2491c16f6809c79f9c5da11f185c7c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>confounding factors</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>multicollinearity</topic><topic>multiple regression</topic><topic>principal components regression</topic><topic>sequential regression</topic><topic>Statistical Report</topic><topic>structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, Michael H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confronting Multicollinearity in Ecological Multiple Regression</atitle><jtitle>Ecology (Durham)</jtitle><date>2003-11</date><risdate>2003</risdate><volume>84</volume><issue>11</issue><spage>2809</spage><epage>2815</epage><pages>2809-2815</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables encumbers analyses and threatens their statistical and inferential interpretation. Using numerical simulations, I quantified the impact of multicollinearity on ecological multiple regression and found that even low levels of collinearity bias analyses (r ≥ 0.28 or r2≥ 0.08), causing (1) inaccurate model parameterization, (2) decreased statistical power, and (3) exclusion of significant predictor variables during model creation. Then, using real ecological data, I demonstrated the utility of various statistical techniques for enhancing the reliability and interpretation of ecological multiple regression in the presence of multicollinearity.</abstract><cop>Washington, DC</cop><pub>Ecology Society of America</pub><doi>10.1890/02-3114</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2003-11, Vol.84 (11), p.2809-2815
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_19228856
source Wiley Online Library - AutoHoldings Journals; Jstor Complete Legacy
subjects Animal, plant and microbial ecology
Biological and medical sciences
confounding factors
Ecology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Methods and techniques (sampling, tagging, trapping, modelling...)
multicollinearity
multiple regression
principal components regression
sequential regression
Statistical Report
structural equation modeling
title Confronting Multicollinearity in Ecological Multiple Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confronting%20Multicollinearity%20in%20Ecological%20Multiple%20Regression&rft.jtitle=Ecology%20(Durham)&rft.au=Graham,%20Michael%20H.&rft.date=2003-11&rft.volume=84&rft.issue=11&rft.spage=2809&rft.epage=2815&rft.pages=2809-2815&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/02-3114&rft_dat=%3Cjstor_proqu%3E3449952%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218968025&rft_id=info:pmid/&rft_jstor_id=3449952&rfr_iscdi=true