Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat
Genetic analyses of complex traits in wheat (Triticum aestivum L.) are facilitated by the availability of unique genetic tools such as chromosome substitution lines and recombinant inbred chromosome lines (RICLs) which allow the effects of genes on single chromosomes to be studied individually. Chro...
Gespeichert in:
Veröffentlicht in: | Crop science 2003-07, Vol.43 (4), p.1493-1505 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1505 |
---|---|
container_issue | 4 |
container_start_page | 1493 |
container_title | Crop science |
container_volume | 43 |
creator | Campbell, B. T. Baenziger, P. S. Gill, K. S. Eskridge, K. M. Budak, H. Erayman, M. Dweikat, I. Yen, Y. |
description | Genetic analyses of complex traits in wheat (Triticum aestivum L.) are facilitated by the availability of unique genetic tools such as chromosome substitution lines and recombinant inbred chromosome lines (RICLs) which allow the effects of genes on single chromosomes to be studied individually. Chromosome 3A of ‘Wichita’ is known to contain alleles at quantitative trait loci (QTLs) that influence variation in grain yield and agronomic performance traits relative to alleles of ‘Cheyenne’. To determine the number, location, and environmental interactions of genes related to agronomic performance on chromosome 3A, QTL and QTL × environment analyses of 98 RICLs‐3A were conducted in seven locations across Nebraska from 1999 through 2001. QTLs were detected for seven of eight agronomic traits measured and generally localized to three regions of chromosome 3A. QTL × environment interactions were detected for some QTLs and these interactions were caused by changes in magnitude and crossover interactions. Major QTLs for kernels per square meter and grain yield were associated within a 5‐centimorgan (cM) interval and appeared to represent a single QTL with pleiotropic effects. This particular QTL displayed environmental interactions caused by changes in magnitude, wherein the positive effect of the Wichita QTL allele was larger in higher yielding environments. |
doi_str_mv | 10.2135/cropsci2003.1493 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19226627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A105518278</galeid><sourcerecordid>A105518278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4643-35755f58c5e9186939b7345f7f6bd8ed676feedb559d7e8d4484ea355fee71343</originalsourceid><addsrcrecordid>eNqFkd2L1DAUxYsoOI6--xgEfets0ny1j6Xs6sDAqjuibyGT3sxkaZMx6bjsf2-6s6DIguQhcPmdcy_nFMVbglcVofzCxHBMxlUY0xVhDX1WLAijvMSC0-fFAmNCSlLTHy-LVyndYoxlI_miOK578JOzzujJBY-CRV-2m4S079Gl_-Vi8GMG9IDWfoKozUwl1KYUjNMT9OjOTQfU7jMYRmfQNmo3JZStukMMY0hhBETb2fj7AfT0unhh9ZDgzeO_LL5dXW67T-Xm-uO6azelYYLRknLJueW14dCQWjS02UnKuJVW7PoaeiGFBeh3nDe9hLpnrGagadYASEIZXRYfzr7HGH6eIE1qdMnAMGgP4ZQUaapKiEpm8N0_4G04RZ9vUxWpBJOciAyVZ2ivB1DO2zDlLPbgcyRD8GBdHrcEc07qStaZXz3B59dDDulJAT4Lco8pRbDqGN2o470iWM0Fq78KVnPBWfL-8XCdjB5s1N649EfHGiyaDC6L9szd5Z33__VV3U1XdV-vP99063n4sOs3etS65g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212647516</pqid></control><display><type>article</type><title>Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Campbell, B. T. ; Baenziger, P. S. ; Gill, K. S. ; Eskridge, K. M. ; Budak, H. ; Erayman, M. ; Dweikat, I. ; Yen, Y.</creator><creatorcontrib>Campbell, B. T. ; Baenziger, P. S. ; Gill, K. S. ; Eskridge, K. M. ; Budak, H. ; Erayman, M. ; Dweikat, I. ; Yen, Y.</creatorcontrib><description>Genetic analyses of complex traits in wheat (Triticum aestivum L.) are facilitated by the availability of unique genetic tools such as chromosome substitution lines and recombinant inbred chromosome lines (RICLs) which allow the effects of genes on single chromosomes to be studied individually. Chromosome 3A of ‘Wichita’ is known to contain alleles at quantitative trait loci (QTLs) that influence variation in grain yield and agronomic performance traits relative to alleles of ‘Cheyenne’. To determine the number, location, and environmental interactions of genes related to agronomic performance on chromosome 3A, QTL and QTL × environment analyses of 98 RICLs‐3A were conducted in seven locations across Nebraska from 1999 through 2001. QTLs were detected for seven of eight agronomic traits measured and generally localized to three regions of chromosome 3A. QTL × environment interactions were detected for some QTLs and these interactions were caused by changes in magnitude and crossover interactions. Major QTLs for kernels per square meter and grain yield were associated within a 5‐centimorgan (cM) interval and appeared to represent a single QTL with pleiotropic effects. This particular QTL displayed environmental interactions caused by changes in magnitude, wherein the positive effect of the Wichita QTL allele was larger in higher yielding environments.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2003.1493</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison: Crop Science Society of America</publisher><subject>Agronomy. Soil science and plant productions ; Biological and medical sciences ; Chromosomes ; Crop yields ; Cytogenetics ; Fundamental and applied biological sciences. Psychology ; Gene mapping ; Generalities. Genetics. Plant material ; Genes ; Genetic aspects ; Genetics ; Genetics and breeding of economic plants ; Grain ; Plant molecular genetics ; Statistics ; Triticum aestivum ; Wheat</subject><ispartof>Crop science, 2003-07, Vol.43 (4), p.1493-1505</ispartof><rights>Copyright © by the Crop Science Society of America, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Crop Science Society of America</rights><rights>Copyright American Society of Agronomy Jul/Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4643-35755f58c5e9186939b7345f7f6bd8ed676feedb559d7e8d4484ea355fee71343</citedby><cites>FETCH-LOGICAL-c4643-35755f58c5e9186939b7345f7f6bd8ed676feedb559d7e8d4484ea355fee71343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2003.1493$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2003.1493$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14906949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, B. T.</creatorcontrib><creatorcontrib>Baenziger, P. S.</creatorcontrib><creatorcontrib>Gill, K. S.</creatorcontrib><creatorcontrib>Eskridge, K. M.</creatorcontrib><creatorcontrib>Budak, H.</creatorcontrib><creatorcontrib>Erayman, M.</creatorcontrib><creatorcontrib>Dweikat, I.</creatorcontrib><creatorcontrib>Yen, Y.</creatorcontrib><title>Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat</title><title>Crop science</title><description>Genetic analyses of complex traits in wheat (Triticum aestivum L.) are facilitated by the availability of unique genetic tools such as chromosome substitution lines and recombinant inbred chromosome lines (RICLs) which allow the effects of genes on single chromosomes to be studied individually. Chromosome 3A of ‘Wichita’ is known to contain alleles at quantitative trait loci (QTLs) that influence variation in grain yield and agronomic performance traits relative to alleles of ‘Cheyenne’. To determine the number, location, and environmental interactions of genes related to agronomic performance on chromosome 3A, QTL and QTL × environment analyses of 98 RICLs‐3A were conducted in seven locations across Nebraska from 1999 through 2001. QTLs were detected for seven of eight agronomic traits measured and generally localized to three regions of chromosome 3A. QTL × environment interactions were detected for some QTLs and these interactions were caused by changes in magnitude and crossover interactions. Major QTLs for kernels per square meter and grain yield were associated within a 5‐centimorgan (cM) interval and appeared to represent a single QTL with pleiotropic effects. This particular QTL displayed environmental interactions caused by changes in magnitude, wherein the positive effect of the Wichita QTL allele was larger in higher yielding environments.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Chromosomes</subject><subject>Crop yields</subject><subject>Cytogenetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene mapping</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genetics and breeding of economic plants</subject><subject>Grain</subject><subject>Plant molecular genetics</subject><subject>Statistics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkd2L1DAUxYsoOI6--xgEfets0ny1j6Xs6sDAqjuibyGT3sxkaZMx6bjsf2-6s6DIguQhcPmdcy_nFMVbglcVofzCxHBMxlUY0xVhDX1WLAijvMSC0-fFAmNCSlLTHy-LVyndYoxlI_miOK578JOzzujJBY-CRV-2m4S079Gl_-Vi8GMG9IDWfoKozUwl1KYUjNMT9OjOTQfU7jMYRmfQNmo3JZStukMMY0hhBETb2fj7AfT0unhh9ZDgzeO_LL5dXW67T-Xm-uO6azelYYLRknLJueW14dCQWjS02UnKuJVW7PoaeiGFBeh3nDe9hLpnrGagadYASEIZXRYfzr7HGH6eIE1qdMnAMGgP4ZQUaapKiEpm8N0_4G04RZ9vUxWpBJOciAyVZ2ivB1DO2zDlLPbgcyRD8GBdHrcEc07qStaZXz3B59dDDulJAT4Lco8pRbDqGN2o470iWM0Fq78KVnPBWfL-8XCdjB5s1N649EfHGiyaDC6L9szd5Z33__VV3U1XdV-vP99063n4sOs3etS65g</recordid><startdate>200307</startdate><enddate>200307</enddate><creator>Campbell, B. T.</creator><creator>Baenziger, P. S.</creator><creator>Gill, K. S.</creator><creator>Eskridge, K. M.</creator><creator>Budak, H.</creator><creator>Erayman, M.</creator><creator>Dweikat, I.</creator><creator>Yen, Y.</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200307</creationdate><title>Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat</title><author>Campbell, B. T. ; Baenziger, P. S. ; Gill, K. S. ; Eskridge, K. M. ; Budak, H. ; Erayman, M. ; Dweikat, I. ; Yen, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4643-35755f58c5e9186939b7345f7f6bd8ed676feedb559d7e8d4484ea355fee71343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Chromosomes</topic><topic>Crop yields</topic><topic>Cytogenetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene mapping</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genetics and breeding of economic plants</topic><topic>Grain</topic><topic>Plant molecular genetics</topic><topic>Statistics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, B. T.</creatorcontrib><creatorcontrib>Baenziger, P. S.</creatorcontrib><creatorcontrib>Gill, K. S.</creatorcontrib><creatorcontrib>Eskridge, K. M.</creatorcontrib><creatorcontrib>Budak, H.</creatorcontrib><creatorcontrib>Erayman, M.</creatorcontrib><creatorcontrib>Dweikat, I.</creatorcontrib><creatorcontrib>Yen, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, B. T.</au><au>Baenziger, P. S.</au><au>Gill, K. S.</au><au>Eskridge, K. M.</au><au>Budak, H.</au><au>Erayman, M.</au><au>Dweikat, I.</au><au>Yen, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat</atitle><jtitle>Crop science</jtitle><date>2003-07</date><risdate>2003</risdate><volume>43</volume><issue>4</issue><spage>1493</spage><epage>1505</epage><pages>1493-1505</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>Genetic analyses of complex traits in wheat (Triticum aestivum L.) are facilitated by the availability of unique genetic tools such as chromosome substitution lines and recombinant inbred chromosome lines (RICLs) which allow the effects of genes on single chromosomes to be studied individually. Chromosome 3A of ‘Wichita’ is known to contain alleles at quantitative trait loci (QTLs) that influence variation in grain yield and agronomic performance traits relative to alleles of ‘Cheyenne’. To determine the number, location, and environmental interactions of genes related to agronomic performance on chromosome 3A, QTL and QTL × environment analyses of 98 RICLs‐3A were conducted in seven locations across Nebraska from 1999 through 2001. QTLs were detected for seven of eight agronomic traits measured and generally localized to three regions of chromosome 3A. QTL × environment interactions were detected for some QTLs and these interactions were caused by changes in magnitude and crossover interactions. Major QTLs for kernels per square meter and grain yield were associated within a 5‐centimorgan (cM) interval and appeared to represent a single QTL with pleiotropic effects. This particular QTL displayed environmental interactions caused by changes in magnitude, wherein the positive effect of the Wichita QTL allele was larger in higher yielding environments.</abstract><cop>Madison</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2003.1493</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2003-07, Vol.43 (4), p.1493-1505 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_proquest_miscellaneous_19226627 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Agronomy. Soil science and plant productions Biological and medical sciences Chromosomes Crop yields Cytogenetics Fundamental and applied biological sciences. Psychology Gene mapping Generalities. Genetics. Plant material Genes Genetic aspects Genetics Genetics and breeding of economic plants Grain Plant molecular genetics Statistics Triticum aestivum Wheat |
title | Identification of QTLs and Environmental Interactions Associated with Agronomic Traits on Chromosome 3A of Wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20QTLs%20and%20Environmental%20Interactions%20Associated%20with%20Agronomic%20Traits%20on%20Chromosome%203A%20of%20Wheat&rft.jtitle=Crop%20science&rft.au=Campbell,%20B.%20T.&rft.date=2003-07&rft.volume=43&rft.issue=4&rft.spage=1493&rft.epage=1505&rft.pages=1493-1505&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2003.1493&rft_dat=%3Cgale_proqu%3EA105518278%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212647516&rft_id=info:pmid/&rft_galeid=A105518278&rfr_iscdi=true |