Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase
Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutan...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-01, Vol.279 (5), p.3348-3353 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3353 |
---|---|
container_issue | 5 |
container_start_page | 3348 |
container_title | The Journal of biological chemistry |
container_volume | 279 |
creator | Meador, Michael G Rajagopalan, Lavanya Lloyd, R Stephen Dodson, M L |
description | Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested
to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account
for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a
DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The
mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The
mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes
of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed
in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a
single turnover cycle. |
doi_str_mv | 10.1074/jbc.M304714200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19225939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19225939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlavHmXx4G1rPpvNwYNUbYWKIhW8hWyStSm7m5p0lf33RlroXIZ5eWYYHgAuERwjyOntutTjFwIpRxRDeASGCBYkJwx9HoMhhBjlArNiAM5iXMNUVKBTMEB0giAs8BDcvfvaZr7K5i7maJK5Nlt2ofU_NvynS5q99cE1zrjWZg-uSfGs7rWPfa2iPQcnlaqjvdj3Efh4elxO5_nidfY8vV_kmhRim4sCCsOt4QxTJKzGxiDBFDdcYaKVYWTC0wSFIJBQWDCLK6NLy0uthKElGYGb3d1N8N-djVvZuKhtXavW-i5KJDBmgogEjnegDj7GYCu5Sd-r0EsE5b8wmYTJg7C0cLW_3JWNNQd8bygB1ztg5b5Wvy5YWTqvV7aRmAvJJCG0IH-zEnA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19225939</pqid></control><display><type>article</type><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</creator><creatorcontrib>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</creatorcontrib><description>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested
to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account
for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a
DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The
mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The
mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes
of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed
in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a
single turnover cycle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M304714200</identifier><identifier>PMID: 14610082</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Alanine - chemistry ; Aspartic Acid - chemistry ; Cell Survival ; Cysteine - chemistry ; deoxyribopyrimidine endonucleosidase ; Dimerization ; DNA - metabolism ; DNA Glycosylases - chemistry ; DNA Glycosylases - metabolism ; DNA Repair ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Glutamic Acid - chemistry ; Histidine - chemistry ; Kinetics ; Lysine - chemistry ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Oligonucleotides - chemistry ; Phenotype ; Plasmids - metabolism ; Serine - chemistry ; Time Factors ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 2004-01, Vol.279 (5), p.3348-3353</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</citedby><cites>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14610082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meador, Michael G</creatorcontrib><creatorcontrib>Rajagopalan, Lavanya</creatorcontrib><creatorcontrib>Lloyd, R Stephen</creatorcontrib><creatorcontrib>Dodson, M L</creatorcontrib><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested
to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account
for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a
DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The
mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The
mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes
of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed
in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a
single turnover cycle.</description><subject>Alanine - chemistry</subject><subject>Aspartic Acid - chemistry</subject><subject>Cell Survival</subject><subject>Cysteine - chemistry</subject><subject>deoxyribopyrimidine endonucleosidase</subject><subject>Dimerization</subject><subject>DNA - metabolism</subject><subject>DNA Glycosylases - chemistry</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA Repair</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Glutamic Acid - chemistry</subject><subject>Histidine - chemistry</subject><subject>Kinetics</subject><subject>Lysine - chemistry</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oligonucleotides - chemistry</subject><subject>Phenotype</subject><subject>Plasmids - metabolism</subject><subject>Serine - chemistry</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LAzEQhoMotlavHmXx4G1rPpvNwYNUbYWKIhW8hWyStSm7m5p0lf33RlroXIZ5eWYYHgAuERwjyOntutTjFwIpRxRDeASGCBYkJwx9HoMhhBjlArNiAM5iXMNUVKBTMEB0giAs8BDcvfvaZr7K5i7maJK5Nlt2ofU_NvynS5q99cE1zrjWZg-uSfGs7rWPfa2iPQcnlaqjvdj3Efh4elxO5_nidfY8vV_kmhRim4sCCsOt4QxTJKzGxiDBFDdcYaKVYWTC0wSFIJBQWDCLK6NLy0uthKElGYGb3d1N8N-djVvZuKhtXavW-i5KJDBmgogEjnegDj7GYCu5Sd-r0EsE5b8wmYTJg7C0cLW_3JWNNQd8bygB1ztg5b5Wvy5YWTqvV7aRmAvJJCG0IH-zEnA8</recordid><startdate>20040130</startdate><enddate>20040130</enddate><creator>Meador, Michael G</creator><creator>Rajagopalan, Lavanya</creator><creator>Lloyd, R Stephen</creator><creator>Dodson, M L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20040130</creationdate><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><author>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Alanine - chemistry</topic><topic>Aspartic Acid - chemistry</topic><topic>Cell Survival</topic><topic>Cysteine - chemistry</topic><topic>deoxyribopyrimidine endonucleosidase</topic><topic>Dimerization</topic><topic>DNA - metabolism</topic><topic>DNA Glycosylases - chemistry</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA Repair</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Glutamic Acid - chemistry</topic><topic>Histidine - chemistry</topic><topic>Kinetics</topic><topic>Lysine - chemistry</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oligonucleotides - chemistry</topic><topic>Phenotype</topic><topic>Plasmids - metabolism</topic><topic>Serine - chemistry</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meador, Michael G</creatorcontrib><creatorcontrib>Rajagopalan, Lavanya</creatorcontrib><creatorcontrib>Lloyd, R Stephen</creatorcontrib><creatorcontrib>Dodson, M L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meador, Michael G</au><au>Rajagopalan, Lavanya</au><au>Lloyd, R Stephen</au><au>Dodson, M L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-01-30</date><risdate>2004</risdate><volume>279</volume><issue>5</issue><spage>3348</spage><epage>3353</epage><pages>3348-3353</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested
to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account
for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a
DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The
mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The
mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes
of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed
in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a
single turnover cycle.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>14610082</pmid><doi>10.1074/jbc.M304714200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2004-01, Vol.279 (5), p.3348-3353 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_19225939 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alanine - chemistry Aspartic Acid - chemistry Cell Survival Cysteine - chemistry deoxyribopyrimidine endonucleosidase Dimerization DNA - metabolism DNA Glycosylases - chemistry DNA Glycosylases - metabolism DNA Repair Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Glutamic Acid - chemistry Histidine - chemistry Kinetics Lysine - chemistry Models, Biological Mutagenesis, Site-Directed Mutation Oligonucleotides - chemistry Phenotype Plasmids - metabolism Serine - chemistry Time Factors Ultraviolet Rays |
title | Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20His-16%20in%20Turnover%20of%20T4%20Pyrimidine%20Dimer%20Glycosylase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meador,%20Michael%20G&rft.date=2004-01-30&rft.volume=279&rft.issue=5&rft.spage=3348&rft.epage=3353&rft.pages=3348-3353&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M304714200&rft_dat=%3Cproquest_cross%3E19225939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19225939&rft_id=info:pmid/14610082&rfr_iscdi=true |