Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase

Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-01, Vol.279 (5), p.3348-3353
Hauptverfasser: Meador, Michael G, Rajagopalan, Lavanya, Lloyd, R Stephen, Dodson, M L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3353
container_issue 5
container_start_page 3348
container_title The Journal of biological chemistry
container_volume 279
creator Meador, Michael G
Rajagopalan, Lavanya
Lloyd, R Stephen
Dodson, M L
description Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle.
doi_str_mv 10.1074/jbc.M304714200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19225939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19225939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlavHmXx4G1rPpvNwYNUbYWKIhW8hWyStSm7m5p0lf33RlroXIZ5eWYYHgAuERwjyOntutTjFwIpRxRDeASGCBYkJwx9HoMhhBjlArNiAM5iXMNUVKBTMEB0giAs8BDcvfvaZr7K5i7maJK5Nlt2ofU_NvynS5q99cE1zrjWZg-uSfGs7rWPfa2iPQcnlaqjvdj3Efh4elxO5_nidfY8vV_kmhRim4sCCsOt4QxTJKzGxiDBFDdcYaKVYWTC0wSFIJBQWDCLK6NLy0uthKElGYGb3d1N8N-djVvZuKhtXavW-i5KJDBmgogEjnegDj7GYCu5Sd-r0EsE5b8wmYTJg7C0cLW_3JWNNQd8bygB1ztg5b5Wvy5YWTqvV7aRmAvJJCG0IH-zEnA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19225939</pqid></control><display><type>article</type><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</creator><creatorcontrib>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</creatorcontrib><description>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M304714200</identifier><identifier>PMID: 14610082</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Alanine - chemistry ; Aspartic Acid - chemistry ; Cell Survival ; Cysteine - chemistry ; deoxyribopyrimidine endonucleosidase ; Dimerization ; DNA - metabolism ; DNA Glycosylases - chemistry ; DNA Glycosylases - metabolism ; DNA Repair ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Glutamic Acid - chemistry ; Histidine - chemistry ; Kinetics ; Lysine - chemistry ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Oligonucleotides - chemistry ; Phenotype ; Plasmids - metabolism ; Serine - chemistry ; Time Factors ; Ultraviolet Rays</subject><ispartof>The Journal of biological chemistry, 2004-01, Vol.279 (5), p.3348-3353</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</citedby><cites>FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14610082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meador, Michael G</creatorcontrib><creatorcontrib>Rajagopalan, Lavanya</creatorcontrib><creatorcontrib>Lloyd, R Stephen</creatorcontrib><creatorcontrib>Dodson, M L</creatorcontrib><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle.</description><subject>Alanine - chemistry</subject><subject>Aspartic Acid - chemistry</subject><subject>Cell Survival</subject><subject>Cysteine - chemistry</subject><subject>deoxyribopyrimidine endonucleosidase</subject><subject>Dimerization</subject><subject>DNA - metabolism</subject><subject>DNA Glycosylases - chemistry</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA Repair</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Glutamic Acid - chemistry</subject><subject>Histidine - chemistry</subject><subject>Kinetics</subject><subject>Lysine - chemistry</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oligonucleotides - chemistry</subject><subject>Phenotype</subject><subject>Plasmids - metabolism</subject><subject>Serine - chemistry</subject><subject>Time Factors</subject><subject>Ultraviolet Rays</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LAzEQhoMotlavHmXx4G1rPpvNwYNUbYWKIhW8hWyStSm7m5p0lf33RlroXIZ5eWYYHgAuERwjyOntutTjFwIpRxRDeASGCBYkJwx9HoMhhBjlArNiAM5iXMNUVKBTMEB0giAs8BDcvfvaZr7K5i7maJK5Nlt2ofU_NvynS5q99cE1zrjWZg-uSfGs7rWPfa2iPQcnlaqjvdj3Efh4elxO5_nidfY8vV_kmhRim4sCCsOt4QxTJKzGxiDBFDdcYaKVYWTC0wSFIJBQWDCLK6NLy0uthKElGYGb3d1N8N-djVvZuKhtXavW-i5KJDBmgogEjnegDj7GYCu5Sd-r0EsE5b8wmYTJg7C0cLW_3JWNNQd8bygB1ztg5b5Wvy5YWTqvV7aRmAvJJCG0IH-zEnA8</recordid><startdate>20040130</startdate><enddate>20040130</enddate><creator>Meador, Michael G</creator><creator>Rajagopalan, Lavanya</creator><creator>Lloyd, R Stephen</creator><creator>Dodson, M L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20040130</creationdate><title>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</title><author>Meador, Michael G ; Rajagopalan, Lavanya ; Lloyd, R Stephen ; Dodson, M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9809d7ed752419ec2dd195a7d7a23cad5367a7d0993034085e2fdcbe7bca9d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Alanine - chemistry</topic><topic>Aspartic Acid - chemistry</topic><topic>Cell Survival</topic><topic>Cysteine - chemistry</topic><topic>deoxyribopyrimidine endonucleosidase</topic><topic>Dimerization</topic><topic>DNA - metabolism</topic><topic>DNA Glycosylases - chemistry</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA Repair</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Glutamic Acid - chemistry</topic><topic>Histidine - chemistry</topic><topic>Kinetics</topic><topic>Lysine - chemistry</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oligonucleotides - chemistry</topic><topic>Phenotype</topic><topic>Plasmids - metabolism</topic><topic>Serine - chemistry</topic><topic>Time Factors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meador, Michael G</creatorcontrib><creatorcontrib>Rajagopalan, Lavanya</creatorcontrib><creatorcontrib>Lloyd, R Stephen</creatorcontrib><creatorcontrib>Dodson, M L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meador, Michael G</au><au>Rajagopalan, Lavanya</au><au>Lloyd, R Stephen</au><au>Dodson, M L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-01-30</date><risdate>2004</risdate><volume>279</volume><issue>5</issue><spage>3348</spage><epage>3353</epage><pages>3348-3353</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro , albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>14610082</pmid><doi>10.1074/jbc.M304714200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2004-01, Vol.279 (5), p.3348-3353
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_19225939
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alanine - chemistry
Aspartic Acid - chemistry
Cell Survival
Cysteine - chemistry
deoxyribopyrimidine endonucleosidase
Dimerization
DNA - metabolism
DNA Glycosylases - chemistry
DNA Glycosylases - metabolism
DNA Repair
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Glutamic Acid - chemistry
Histidine - chemistry
Kinetics
Lysine - chemistry
Models, Biological
Mutagenesis, Site-Directed
Mutation
Oligonucleotides - chemistry
Phenotype
Plasmids - metabolism
Serine - chemistry
Time Factors
Ultraviolet Rays
title Role of His-16 in Turnover of T4 Pyrimidine Dimer Glycosylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20His-16%20in%20Turnover%20of%20T4%20Pyrimidine%20Dimer%20Glycosylase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Meador,%20Michael%20G&rft.date=2004-01-30&rft.volume=279&rft.issue=5&rft.spage=3348&rft.epage=3353&rft.pages=3348-3353&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M304714200&rft_dat=%3Cproquest_cross%3E19225939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19225939&rft_id=info:pmid/14610082&rfr_iscdi=true