Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria
Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2017-11, Vol.40 (11), p.1589-1601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1601 |
---|---|
container_issue | 11 |
container_start_page | 1589 |
container_title | Bioprocess and biosystems engineering |
container_volume | 40 |
creator | Sagir, Emrah Ozgur, Ebru Gunduz, Ufuk Eroglu, Inci Yucel, Meral |
description | Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H
2
and CO
2
. However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria (
Rhodobacter capsulatus
DSM 1710,
R. capsulatus
YO3,
Rhodobacter sphaeroides
O.U.001, and
Rhodopseudomonas palustris
DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H
2
/mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by
Rp. palustris
on 5 mM sucrose. A hydrogen yield of 19 mol H
2
/mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by
Rp. palustris
from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising. |
doi_str_mv | 10.1007/s00449-017-1815-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1922506834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1922506834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJyW6T_IBegiCXXNyMZGttH0tI2sJCD2nOQrZGjoMtufpYsv--WjYJpdCTBumZZwa9hHxm8IUB1DcBoKraAlhdsIaJ4uUDWbNNLuoNiJO3WrRsRT6F8AzARMPhlKx4U5dQcrEmu4fRDhMWIaoB6fLkojPoZ7RRxXGHtBvd0157N6Cli3c69XF0lhrvZhrSoDztECOd3aRCwEC7PdWjyYpsoEvyy4TUOluENJmUYdVH9KM6Jx-NmgJevJ5n5PH-7tft92L789uP26_boq-gjQXysuk5il40rANjDChsKmw5F1ojr1rUpjMbzZCVStQ9qwHyjcAGsG07XZ6R66M37_47YYhyHkOP06QsuhQkO6hg05RVRq_-QZ9d8jZvl6kqf3QNos0UO1K9dyF4NHLx46z8XjKQh1DkMRSZQ5GHUORL7rl8NaduRv3e8ZZCBvgRCPnJDuj_Gv1f6x8qZps6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940447059</pqid></control><display><type>article</type><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</creator><creatorcontrib>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</creatorcontrib><description>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H
2
and CO
2
. However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria (
Rhodobacter capsulatus
DSM 1710,
R. capsulatus
YO3,
Rhodobacter sphaeroides
O.U.001, and
Rhodopseudomonas palustris
DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H
2
/mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by
Rp. palustris
on 5 mM sucrose. A hydrogen yield of 19 mol H
2
/mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by
Rp. palustris
from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-017-1815-x</identifier><identifier>PMID: 28730325</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bacteria ; Beta vulgaris - microbiology ; Bioengineering ; Biohydrogen ; Biotechnology ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Feasibility studies ; Fermentation ; Food Science ; Hydrogen ; Hydrogen - metabolism ; Hydrogen-Ion Concentration ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Integration ; Molasses ; Photochemistry ; Production capacity ; Productivity ; Research Paper ; Rhodobacter - growth & development ; Rhodobacter - metabolism ; Species Specificity ; Strains (organisms) ; Substrates ; Sucrose ; Sucrose - metabolism ; Sugar ; Sulfur ; Sulfur bacteria ; Sustainable energy ; Waste recycling ; Wastes</subject><ispartof>Bioprocess and biosystems engineering, 2017-11, Vol.40 (11), p.1589-1601</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</citedby><cites>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-017-1815-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-017-1815-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28730325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sagir, Emrah</creatorcontrib><creatorcontrib>Ozgur, Ebru</creatorcontrib><creatorcontrib>Gunduz, Ufuk</creatorcontrib><creatorcontrib>Eroglu, Inci</creatorcontrib><creatorcontrib>Yucel, Meral</creatorcontrib><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H
2
and CO
2
. However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria (
Rhodobacter capsulatus
DSM 1710,
R. capsulatus
YO3,
Rhodobacter sphaeroides
O.U.001, and
Rhodopseudomonas palustris
DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H
2
/mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by
Rp. palustris
on 5 mM sucrose. A hydrogen yield of 19 mol H
2
/mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by
Rp. palustris
from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</description><subject>Bacteria</subject><subject>Beta vulgaris - microbiology</subject><subject>Bioengineering</subject><subject>Biohydrogen</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Food Science</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Integration</subject><subject>Molasses</subject><subject>Photochemistry</subject><subject>Production capacity</subject><subject>Productivity</subject><subject>Research Paper</subject><subject>Rhodobacter - growth & development</subject><subject>Rhodobacter - metabolism</subject><subject>Species Specificity</subject><subject>Strains (organisms)</subject><subject>Substrates</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><subject>Sugar</subject><subject>Sulfur</subject><subject>Sulfur bacteria</subject><subject>Sustainable energy</subject><subject>Waste recycling</subject><subject>Wastes</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJyW6T_IBegiCXXNyMZGttH0tI2sJCD2nOQrZGjoMtufpYsv--WjYJpdCTBumZZwa9hHxm8IUB1DcBoKraAlhdsIaJ4uUDWbNNLuoNiJO3WrRsRT6F8AzARMPhlKx4U5dQcrEmu4fRDhMWIaoB6fLkojPoZ7RRxXGHtBvd0157N6Cli3c69XF0lhrvZhrSoDztECOd3aRCwEC7PdWjyYpsoEvyy4TUOluENJmUYdVH9KM6Jx-NmgJevJ5n5PH-7tft92L789uP26_boq-gjQXysuk5il40rANjDChsKmw5F1ojr1rUpjMbzZCVStQ9qwHyjcAGsG07XZ6R66M37_47YYhyHkOP06QsuhQkO6hg05RVRq_-QZ9d8jZvl6kqf3QNos0UO1K9dyF4NHLx46z8XjKQh1DkMRSZQ5GHUORL7rl8NaduRv3e8ZZCBvgRCPnJDuj_Gv1f6x8qZps6</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Sagir, Emrah</creator><creator>Ozgur, Ebru</creator><creator>Gunduz, Ufuk</creator><creator>Eroglu, Inci</creator><creator>Yucel, Meral</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><author>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Beta vulgaris - microbiology</topic><topic>Bioengineering</topic><topic>Biohydrogen</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Food Science</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Integration</topic><topic>Molasses</topic><topic>Photochemistry</topic><topic>Production capacity</topic><topic>Productivity</topic><topic>Research Paper</topic><topic>Rhodobacter - growth & development</topic><topic>Rhodobacter - metabolism</topic><topic>Species Specificity</topic><topic>Strains (organisms)</topic><topic>Substrates</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><topic>Sugar</topic><topic>Sulfur</topic><topic>Sulfur bacteria</topic><topic>Sustainable energy</topic><topic>Waste recycling</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagir, Emrah</creatorcontrib><creatorcontrib>Ozgur, Ebru</creatorcontrib><creatorcontrib>Gunduz, Ufuk</creatorcontrib><creatorcontrib>Eroglu, Inci</creatorcontrib><creatorcontrib>Yucel, Meral</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagir, Emrah</au><au>Ozgur, Ebru</au><au>Gunduz, Ufuk</au><au>Eroglu, Inci</au><au>Yucel, Meral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>40</volume><issue>11</issue><spage>1589</spage><epage>1601</epage><pages>1589-1601</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H
2
and CO
2
. However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria (
Rhodobacter capsulatus
DSM 1710,
R. capsulatus
YO3,
Rhodobacter sphaeroides
O.U.001, and
Rhodopseudomonas palustris
DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H
2
/mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by
Rp. palustris
on 5 mM sucrose. A hydrogen yield of 19 mol H
2
/mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by
Rp. palustris
from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28730325</pmid><doi>10.1007/s00449-017-1815-x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2017-11, Vol.40 (11), p.1589-1601 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_miscellaneous_1922506834 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Bacteria Beta vulgaris - microbiology Bioengineering Biohydrogen Biotechnology Carbon dioxide Chemistry Chemistry and Materials Science Environmental Engineering/Biotechnology Feasibility studies Fermentation Food Science Hydrogen Hydrogen - metabolism Hydrogen-Ion Concentration Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Integration Molasses Photochemistry Production capacity Productivity Research Paper Rhodobacter - growth & development Rhodobacter - metabolism Species Specificity Strains (organisms) Substrates Sucrose Sucrose - metabolism Sugar Sulfur Sulfur bacteria Sustainable energy Waste recycling Wastes |
title | Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-stage%20photofermentative%20biohydrogen%20production%20from%20sugar%20beet%20molasses%20by%20different%20purple%20non-sulfur%20bacteria&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Sagir,%20Emrah&rft.date=2017-11-01&rft.volume=40&rft.issue=11&rft.spage=1589&rft.epage=1601&rft.pages=1589-1601&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-017-1815-x&rft_dat=%3Cproquest_cross%3E1922506834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940447059&rft_id=info:pmid/28730325&rfr_iscdi=true |