Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria

Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2017-11, Vol.40 (11), p.1589-1601
Hauptverfasser: Sagir, Emrah, Ozgur, Ebru, Gunduz, Ufuk, Eroglu, Inci, Yucel, Meral
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1601
container_issue 11
container_start_page 1589
container_title Bioprocess and biosystems engineering
container_volume 40
creator Sagir, Emrah
Ozgur, Ebru
Gunduz, Ufuk
Eroglu, Inci
Yucel, Meral
description Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H 2 and CO 2 . However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria ( Rhodobacter capsulatus DSM 1710, R. capsulatus YO3, Rhodobacter sphaeroides O.U.001, and Rhodopseudomonas palustris DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H 2 /mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by Rp. palustris on 5 mM sucrose. A hydrogen yield of 19 mol H 2 /mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by Rp. palustris from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.
doi_str_mv 10.1007/s00449-017-1815-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1922506834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1922506834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJyW6T_IBegiCXXNyMZGttH0tI2sJCD2nOQrZGjoMtufpYsv--WjYJpdCTBumZZwa9hHxm8IUB1DcBoKraAlhdsIaJ4uUDWbNNLuoNiJO3WrRsRT6F8AzARMPhlKx4U5dQcrEmu4fRDhMWIaoB6fLkojPoZ7RRxXGHtBvd0157N6Cli3c69XF0lhrvZhrSoDztECOd3aRCwEC7PdWjyYpsoEvyy4TUOluENJmUYdVH9KM6Jx-NmgJevJ5n5PH-7tft92L789uP26_boq-gjQXysuk5il40rANjDChsKmw5F1ojr1rUpjMbzZCVStQ9qwHyjcAGsG07XZ6R66M37_47YYhyHkOP06QsuhQkO6hg05RVRq_-QZ9d8jZvl6kqf3QNos0UO1K9dyF4NHLx46z8XjKQh1DkMRSZQ5GHUORL7rl8NaduRv3e8ZZCBvgRCPnJDuj_Gv1f6x8qZps6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940447059</pqid></control><display><type>article</type><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</creator><creatorcontrib>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</creatorcontrib><description>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H 2 and CO 2 . However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria ( Rhodobacter capsulatus DSM 1710, R. capsulatus YO3, Rhodobacter sphaeroides O.U.001, and Rhodopseudomonas palustris DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H 2 /mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by Rp. palustris on 5 mM sucrose. A hydrogen yield of 19 mol H 2 /mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by Rp. palustris from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-017-1815-x</identifier><identifier>PMID: 28730325</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bacteria ; Beta vulgaris - microbiology ; Bioengineering ; Biohydrogen ; Biotechnology ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Feasibility studies ; Fermentation ; Food Science ; Hydrogen ; Hydrogen - metabolism ; Hydrogen-Ion Concentration ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Integration ; Molasses ; Photochemistry ; Production capacity ; Productivity ; Research Paper ; Rhodobacter - growth &amp; development ; Rhodobacter - metabolism ; Species Specificity ; Strains (organisms) ; Substrates ; Sucrose ; Sucrose - metabolism ; Sugar ; Sulfur ; Sulfur bacteria ; Sustainable energy ; Waste recycling ; Wastes</subject><ispartof>Bioprocess and biosystems engineering, 2017-11, Vol.40 (11), p.1589-1601</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</citedby><cites>FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-017-1815-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-017-1815-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28730325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sagir, Emrah</creatorcontrib><creatorcontrib>Ozgur, Ebru</creatorcontrib><creatorcontrib>Gunduz, Ufuk</creatorcontrib><creatorcontrib>Eroglu, Inci</creatorcontrib><creatorcontrib>Yucel, Meral</creatorcontrib><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H 2 and CO 2 . However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria ( Rhodobacter capsulatus DSM 1710, R. capsulatus YO3, Rhodobacter sphaeroides O.U.001, and Rhodopseudomonas palustris DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H 2 /mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by Rp. palustris on 5 mM sucrose. A hydrogen yield of 19 mol H 2 /mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by Rp. palustris from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</description><subject>Bacteria</subject><subject>Beta vulgaris - microbiology</subject><subject>Bioengineering</subject><subject>Biohydrogen</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Food Science</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Integration</subject><subject>Molasses</subject><subject>Photochemistry</subject><subject>Production capacity</subject><subject>Productivity</subject><subject>Research Paper</subject><subject>Rhodobacter - growth &amp; development</subject><subject>Rhodobacter - metabolism</subject><subject>Species Specificity</subject><subject>Strains (organisms)</subject><subject>Substrates</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><subject>Sugar</subject><subject>Sulfur</subject><subject>Sulfur bacteria</subject><subject>Sustainable energy</subject><subject>Waste recycling</subject><subject>Wastes</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJyW6T_IBegiCXXNyMZGttH0tI2sJCD2nOQrZGjoMtufpYsv--WjYJpdCTBumZZwa9hHxm8IUB1DcBoKraAlhdsIaJ4uUDWbNNLuoNiJO3WrRsRT6F8AzARMPhlKx4U5dQcrEmu4fRDhMWIaoB6fLkojPoZ7RRxXGHtBvd0157N6Cli3c69XF0lhrvZhrSoDztECOd3aRCwEC7PdWjyYpsoEvyy4TUOluENJmUYdVH9KM6Jx-NmgJevJ5n5PH-7tft92L789uP26_boq-gjQXysuk5il40rANjDChsKmw5F1ojr1rUpjMbzZCVStQ9qwHyjcAGsG07XZ6R66M37_47YYhyHkOP06QsuhQkO6hg05RVRq_-QZ9d8jZvl6kqf3QNos0UO1K9dyF4NHLx46z8XjKQh1DkMRSZQ5GHUORL7rl8NaduRv3e8ZZCBvgRCPnJDuj_Gv1f6x8qZps6</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Sagir, Emrah</creator><creator>Ozgur, Ebru</creator><creator>Gunduz, Ufuk</creator><creator>Eroglu, Inci</creator><creator>Yucel, Meral</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</title><author>Sagir, Emrah ; Ozgur, Ebru ; Gunduz, Ufuk ; Eroglu, Inci ; Yucel, Meral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e238c2e5c581b0fff0ae84e9225dde249edfbf6d1e13a57c1700dfb5e80e99bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Beta vulgaris - microbiology</topic><topic>Bioengineering</topic><topic>Biohydrogen</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Food Science</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Integration</topic><topic>Molasses</topic><topic>Photochemistry</topic><topic>Production capacity</topic><topic>Productivity</topic><topic>Research Paper</topic><topic>Rhodobacter - growth &amp; development</topic><topic>Rhodobacter - metabolism</topic><topic>Species Specificity</topic><topic>Strains (organisms)</topic><topic>Substrates</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><topic>Sugar</topic><topic>Sulfur</topic><topic>Sulfur bacteria</topic><topic>Sustainable energy</topic><topic>Waste recycling</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagir, Emrah</creatorcontrib><creatorcontrib>Ozgur, Ebru</creatorcontrib><creatorcontrib>Gunduz, Ufuk</creatorcontrib><creatorcontrib>Eroglu, Inci</creatorcontrib><creatorcontrib>Yucel, Meral</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagir, Emrah</au><au>Ozgur, Ebru</au><au>Gunduz, Ufuk</au><au>Eroglu, Inci</au><au>Yucel, Meral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>40</volume><issue>11</issue><spage>1589</spage><epage>1601</epage><pages>1589-1601</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Biohydrogen production via fermentative routes offers considerable advantages in waste recycling and sustainable energy production. This can be realized by single-stage dark or photofermentative processes, or by a two-stage integrated process; the latter offering the higher production yields due to complete conversion of sugar substrates into H 2 and CO 2 . However, problems arising from the integration of these two processes limit its scale-up and implementation. Hence, high efficiency one-step fermentative biohydrogen production processes from sugar-rich wastes are preferable. In this study, different strains of purple non-sulfur bacteria were investigated for their biohydrogen production capacity on pure sucrose and sugar beet molasses, and the feasibility of single-stage photofermentative biohydrogen production was evaluated. A single-stage photofermentation process was carried out using four different strains of purple non-sulfur bacteria ( Rhodobacter capsulatus DSM 1710, R. capsulatus YO3, Rhodobacter sphaeroides O.U.001, and Rhodopseudomonas palustris DSM 127) on different initial sucrose concentrations. The highest hydrogen yield obtained was 10.5 mol H 2 /mol of sucrose and the maximum hydrogen productivity was 0.78 mmol/L h by Rp. palustris on 5 mM sucrose. A hydrogen yield of 19 mol H 2 /mol sucrose, which represents 79% of theoretical yield, and a maximum hydrogen productivity of 0.55 mmol/L h were obtained by Rp. palustris from sugar beet molasses. The yield was comparable to those values obtained in two-stage processes. The present study demonstrates that single-stage photofermentation using purple non-sulfur bacteria on sucrose-based wastes is promising.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28730325</pmid><doi>10.1007/s00449-017-1815-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2017-11, Vol.40 (11), p.1589-1601
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_1922506834
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Bacteria
Beta vulgaris - microbiology
Bioengineering
Biohydrogen
Biotechnology
Carbon dioxide
Chemistry
Chemistry and Materials Science
Environmental Engineering/Biotechnology
Feasibility studies
Fermentation
Food Science
Hydrogen
Hydrogen - metabolism
Hydrogen-Ion Concentration
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Integration
Molasses
Photochemistry
Production capacity
Productivity
Research Paper
Rhodobacter - growth & development
Rhodobacter - metabolism
Species Specificity
Strains (organisms)
Substrates
Sucrose
Sucrose - metabolism
Sugar
Sulfur
Sulfur bacteria
Sustainable energy
Waste recycling
Wastes
title Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-stage%20photofermentative%20biohydrogen%20production%20from%20sugar%20beet%20molasses%20by%20different%20purple%20non-sulfur%20bacteria&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Sagir,%20Emrah&rft.date=2017-11-01&rft.volume=40&rft.issue=11&rft.spage=1589&rft.epage=1601&rft.pages=1589-1601&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-017-1815-x&rft_dat=%3Cproquest_cross%3E1922506834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940447059&rft_id=info:pmid/28730325&rfr_iscdi=true