Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases

Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine ϵ-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-12, Vol.278 (51), p.50985-50998
Hauptverfasser: Jackson, Michael D., Schmidt, Manning T., Oppenheimer, Norman J., Denu, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50998
container_issue 51
container_start_page 50985
container_title The Journal of biological chemistry
container_volume 278
creator Jackson, Michael D.
Schmidt, Manning T.
Oppenheimer, Norman J.
Denu, John M.
description Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine ϵ-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2′-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including β-2′-deoxy-2′-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2′-OH ribose. The observed enzyme-catalyzed formation of a labile 1′-acetylated-ADP-fluororibose intermediate using β-2′-deoxy-2′-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1′ ribose to form an initial iminium adduct.
doi_str_mv 10.1074/jbc.M306552200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19216016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820753536</els_id><sourcerecordid>19216016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-d75b2731b97ad06cd298d5e99aff605a8da201fdf47a9533d6e0dc86e1b3f4e93</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhq0KVLbQK0eUA-KWXduJk_iIKC1Iy4cESL0Zx56QWSX21s622n9ft7sSJ-Yy0uh5X40eQk4ZnTNal4tVa-Z3Ba2E4JzST2TGaFPkhWA_D8iMUs5yyUVzRL7EuKJpSsk-kyNWJlzKakZe78D02mEcM99l92j8hE6PaCG7dT22OKF3mXY2ew7axbdha3xEq_-f2232hIFnNxgn72DxGPwE6LJvoA1M20FHiCfksNNDhK_7fUxevl8_X93ky4cft1eXy9wIwabc1qLldcFaWWtLK2O5bKwAKXXXVVToxmpOWWe7stZSFIWtgFrTVMDaoitBFsfkYte7Dv7XBuKkRowGhkE78JuomOSsoqxK4HwHmuBjDNCpdcBRh61iVP1zqpJT9e40Bc72zZt2BPuO7yUm4HwH9PjW_8EAqkVvehgVrxslmBJUNiJhzQ6DpOE3QlDRIDgDNkXMpKzHj174CymWklw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19216016</pqid></control><display><type>article</type><title>Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jackson, Michael D. ; Schmidt, Manning T. ; Oppenheimer, Norman J. ; Denu, John M.</creator><creatorcontrib>Jackson, Michael D. ; Schmidt, Manning T. ; Oppenheimer, Norman J. ; Denu, John M.</creatorcontrib><description>Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine ϵ-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2′-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including β-2′-deoxy-2′-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2′-OH ribose. The observed enzyme-catalyzed formation of a labile 1′-acetylated-ADP-fluororibose intermediate using β-2′-deoxy-2′-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1′ ribose to form an initial iminium adduct.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M306552200</identifier><identifier>PMID: 14522996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Catalysis ; Glycosylation ; Histone Deacetylases - genetics ; Histone Deacetylases - physiology ; Humans ; Kinetics ; Models, Chemical ; NAD - chemistry ; Niacinamide - antagonists &amp; inhibitors ; nicotinamide ; O-acetyl-ADP-ribose ; Pyridines - chemistry ; Ribose - chemistry ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology ; Sir2 protein ; Sirtuin 1 ; Sirtuin 2 ; Sirtuins - genetics ; Sirtuins - physiology</subject><ispartof>The Journal of biological chemistry, 2003-12, Vol.278 (51), p.50985-50998</ispartof><rights>2003 © 2003 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-d75b2731b97ad06cd298d5e99aff605a8da201fdf47a9533d6e0dc86e1b3f4e93</citedby><cites>FETCH-LOGICAL-c551t-d75b2731b97ad06cd298d5e99aff605a8da201fdf47a9533d6e0dc86e1b3f4e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14522996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Michael D.</creatorcontrib><creatorcontrib>Schmidt, Manning T.</creatorcontrib><creatorcontrib>Oppenheimer, Norman J.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><title>Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine ϵ-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2′-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including β-2′-deoxy-2′-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2′-OH ribose. The observed enzyme-catalyzed formation of a labile 1′-acetylated-ADP-fluororibose intermediate using β-2′-deoxy-2′-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1′ ribose to form an initial iminium adduct.</description><subject>Amino Acid Substitution</subject><subject>Catalysis</subject><subject>Glycosylation</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - physiology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>NAD - chemistry</subject><subject>Niacinamide - antagonists &amp; inhibitors</subject><subject>nicotinamide</subject><subject>O-acetyl-ADP-ribose</subject><subject>Pyridines - chemistry</subject><subject>Ribose - chemistry</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology</subject><subject>Sir2 protein</subject><subject>Sirtuin 1</subject><subject>Sirtuin 2</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P3DAQhq0KVLbQK0eUA-KWXduJk_iIKC1Iy4cESL0Zx56QWSX21s622n9ft7sSJ-Yy0uh5X40eQk4ZnTNal4tVa-Z3Ba2E4JzST2TGaFPkhWA_D8iMUs5yyUVzRL7EuKJpSsk-kyNWJlzKakZe78D02mEcM99l92j8hE6PaCG7dT22OKF3mXY2ew7axbdha3xEq_-f2232hIFnNxgn72DxGPwE6LJvoA1M20FHiCfksNNDhK_7fUxevl8_X93ky4cft1eXy9wIwabc1qLldcFaWWtLK2O5bKwAKXXXVVToxmpOWWe7stZSFIWtgFrTVMDaoitBFsfkYte7Dv7XBuKkRowGhkE78JuomOSsoqxK4HwHmuBjDNCpdcBRh61iVP1zqpJT9e40Bc72zZt2BPuO7yUm4HwH9PjW_8EAqkVvehgVrxslmBJUNiJhzQ6DpOE3QlDRIDgDNkXMpKzHj174CymWklw</recordid><startdate>20031219</startdate><enddate>20031219</enddate><creator>Jackson, Michael D.</creator><creator>Schmidt, Manning T.</creator><creator>Oppenheimer, Norman J.</creator><creator>Denu, John M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20031219</creationdate><title>Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases</title><author>Jackson, Michael D. ; Schmidt, Manning T. ; Oppenheimer, Norman J. ; Denu, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-d75b2731b97ad06cd298d5e99aff605a8da201fdf47a9533d6e0dc86e1b3f4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Substitution</topic><topic>Catalysis</topic><topic>Glycosylation</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - physiology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>NAD - chemistry</topic><topic>Niacinamide - antagonists &amp; inhibitors</topic><topic>nicotinamide</topic><topic>O-acetyl-ADP-ribose</topic><topic>Pyridines - chemistry</topic><topic>Ribose - chemistry</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology</topic><topic>Sir2 protein</topic><topic>Sirtuin 1</topic><topic>Sirtuin 2</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Michael D.</creatorcontrib><creatorcontrib>Schmidt, Manning T.</creatorcontrib><creatorcontrib>Oppenheimer, Norman J.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Michael D.</au><au>Schmidt, Manning T.</au><au>Oppenheimer, Norman J.</au><au>Denu, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-12-19</date><risdate>2003</risdate><volume>278</volume><issue>51</issue><spage>50985</spage><epage>50998</epage><pages>50985-50998</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Silent information regulator 2 (Sir2) enzymes catalyze NAD+-dependent protein/histone deacetylation, where the acetyl group from the lysine ϵ-amino group is transferred to the ADP-ribose moiety of NAD+, producing nicotinamide and the novel metabolite O-acetyl-ADP-ribose. Sir2 proteins have been shown to regulate gene silencing, metabolic enzymes, and life span. Recently, nicotinamide has been implicated as a direct negative regulator of cellular Sir2 function; however, the mechanism of nicotinamide inhibition was not established. Sir2 enzymes are multifunctional in that the deacetylase reaction involves the cleavage of the nicotinamide-ribosyl, cleavage of an amide bond, and transfer of the acetyl group ultimately to the 2′-ribose hydroxyl of ADP-ribose. Here we demonstrate that nicotinamide inhibition is the result of nicotinamide intercepting an ADP-ribosyl-enzyme-acetyl peptide intermediate with regeneration of NAD+ (transglycosidation). The cellular implications are discussed. A variety of 3-substituted pyridines was found to be substrates for enzyme-catalyzed transglycosidation. A Brönsted plot of the data yielded a slope of +0.98, consistent with the development of a nearly full positive charge in the transition state, and with basicity of the attacking nucleophile as a strong predictor of reactivity. NAD+ analogues including β-2′-deoxy-2′-fluororibo-NAD+ and a His-to-Ala mutant were used to probe the mechanism of nicotinamide-ribosyl cleavage and acetyl group transfer. We demonstrate that nicotinamide-ribosyl cleavage is distinct from acetyl group transfer to the 2′-OH ribose. The observed enzyme-catalyzed formation of a labile 1′-acetylated-ADP-fluororibose intermediate using β-2′-deoxy-2′-fluororibo-NAD+ supports a mechanism where, after nicotinamide-ribosyl cleavage, the carbonyl oxygen of acetylated substrate attacks the C-1′ ribose to form an initial iminium adduct.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14522996</pmid><doi>10.1074/jbc.M306552200</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2003-12, Vol.278 (51), p.50985-50998
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_19216016
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acid Substitution
Catalysis
Glycosylation
Histone Deacetylases - genetics
Histone Deacetylases - physiology
Humans
Kinetics
Models, Chemical
NAD - chemistry
Niacinamide - antagonists & inhibitors
nicotinamide
O-acetyl-ADP-ribose
Pyridines - chemistry
Ribose - chemistry
Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics
Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology
Sir2 protein
Sirtuin 1
Sirtuin 2
Sirtuins - genetics
Sirtuins - physiology
title Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Nicotinamide%20Inhibition%20and%20Transglycosidation%20by%20Sir2%20Histone/Protein%20Deacetylases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jackson,%20Michael%20D.&rft.date=2003-12-19&rft.volume=278&rft.issue=51&rft.spage=50985&rft.epage=50998&rft.pages=50985-50998&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M306552200&rft_dat=%3Cproquest_cross%3E19216016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19216016&rft_id=info:pmid/14522996&rft_els_id=S0021925820753536&rfr_iscdi=true