Role for Fes/Fps Tyrosine Kinase in Microtubule Nucleation through Its Fes/CIP4 Homology Domain

We have previously demonstrated that Fes/Fps (Fes) tyrosine kinase is involved in Semaphorin3A-mediated signaling. Here we report a role for Fes tyrosine kinase in microtubule dynamics. A fibrous formation of Fes was observed in a kinase-dependent manner, which associated with microtubules and funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-12, Vol.278 (49), p.49129-49133
Hauptverfasser: Takahashi, Shusuke, Inatome, Ryoko, Hotta, Azusa, Qin, Qingyu, Hackenmiller, Renee, Simon, M. Celeste, Yamamura, Hirohei, Yanagi, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously demonstrated that Fes/Fps (Fes) tyrosine kinase is involved in Semaphorin3A-mediated signaling. Here we report a role for Fes tyrosine kinase in microtubule dynamics. A fibrous formation of Fes was observed in a kinase-dependent manner, which associated with microtubules and functionally correlated with microtubule bundling. Microtubule regeneration assays revealed that Fes aggregates colocalized with γ-tubulin at microtubule nucleation sites in a Fes/CIP4 homology (FCH) domain-dependent manner and that expression of FCH domain-deleted Fes mutants blocked normal centrosome formation. In support of these observations, mouse embryonic fibroblasts derived from Fes-deficient mice displayed an aberrant structure of nucleation and centrosome with unbundling and disoriented filaments of microtubules. Our findings suggest that Fes plays a critical role in microtubule dynamics including microtubule nucleation and bundling through its FCH domain.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.C300289200