Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis

We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-09, Vol.33 (37), p.9444-9454
Hauptverfasser: DeSario, Paul A, Pietron, Jeremy J, Dunkelberger, Adam, Brintlinger, Todd H, Baturina, Olga, Stroud, Rhonda M, Owrutsky, Jeffrey C, Rolison, Debra R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9454
container_issue 37
container_start_page 9444
container_title Langmuir
container_volume 33
creator DeSario, Paul A
Pietron, Jeremy J
Dunkelberger, Adam
Brintlinger, Todd H
Baturina, Olga
Stroud, Rhonda M
Owrutsky, Jeffrey C
Rolison, Debra R
description We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H2 generation with and without Pt cocatalysts added to Au–TiO2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light–stimulated generation of conduction band electrons in Au–TiO2 and TiO2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au–TiO2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.
doi_str_mv 10.1021/acs.langmuir.7b01117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1921135287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921135287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-eab46bcb0362fa2c831dbf3ec702b8ad7420333a079c53751f6977a5521d88853</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotla_gUiOXrbmz6bJHku1KogWrBcvy2w2227Jbmqye-i3N6WtR2GYYeC9N8wPoVtKxpQw-gA6jC20q6av_VgWhFIqz9CQCkYSoZg8R0MiU57IdMIH6CqEDSEk42l2iQZMScbjMkTfCwuhcW2t8dR4tzI2YIiFl2tvTPJYN6YNtWvB4ndoXdBgDY6ernK-wbHhT2fB43lvLF6sXec0dGB3oQ7X6KICG8zNcY7Q1_xpOXtJ3j6eX2fTtwS4El1ioEgnhS4In7AKmFaclkXFjZaEFQpKmTLCOQciMy24FLSaZFKCEIyWSinBR-j-kLv17qc3ocubOmhjIxzj-pDTjFHKRfw5StODVHsXgjdVvvV1A36XU5LvqeaRan6imh-pRtvd8UJfNKb8M50wRgE5CPb2jet95BX-z_wFa3aHIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921135287</pqid></control><display><type>article</type><title>Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis</title><source>ACS Publications</source><creator>DeSario, Paul A ; Pietron, Jeremy J ; Dunkelberger, Adam ; Brintlinger, Todd H ; Baturina, Olga ; Stroud, Rhonda M ; Owrutsky, Jeffrey C ; Rolison, Debra R</creator><creatorcontrib>DeSario, Paul A ; Pietron, Jeremy J ; Dunkelberger, Adam ; Brintlinger, Todd H ; Baturina, Olga ; Stroud, Rhonda M ; Owrutsky, Jeffrey C ; Rolison, Debra R</creatorcontrib><description>We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H2 generation with and without Pt cocatalysts added to Au–TiO2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light–stimulated generation of conduction band electrons in Au–TiO2 and TiO2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au–TiO2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.7b01117</identifier><identifier>PMID: 28723093</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-09, Vol.33 (37), p.9444-9454</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-eab46bcb0362fa2c831dbf3ec702b8ad7420333a079c53751f6977a5521d88853</citedby><cites>FETCH-LOGICAL-a385t-eab46bcb0362fa2c831dbf3ec702b8ad7420333a079c53751f6977a5521d88853</cites><orcidid>0000-0003-0493-9931 ; 0000-0001-7761-2812 ; 0000-0003-2964-4849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.7b01117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.7b01117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28723093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeSario, Paul A</creatorcontrib><creatorcontrib>Pietron, Jeremy J</creatorcontrib><creatorcontrib>Dunkelberger, Adam</creatorcontrib><creatorcontrib>Brintlinger, Todd H</creatorcontrib><creatorcontrib>Baturina, Olga</creatorcontrib><creatorcontrib>Stroud, Rhonda M</creatorcontrib><creatorcontrib>Owrutsky, Jeffrey C</creatorcontrib><creatorcontrib>Rolison, Debra R</creatorcontrib><title>Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H2 generation with and without Pt cocatalysts added to Au–TiO2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light–stimulated generation of conduction band electrons in Au–TiO2 and TiO2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au–TiO2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMotla_gUiOXrbmz6bJHku1KogWrBcvy2w2227Jbmqye-i3N6WtR2GYYeC9N8wPoVtKxpQw-gA6jC20q6av_VgWhFIqz9CQCkYSoZg8R0MiU57IdMIH6CqEDSEk42l2iQZMScbjMkTfCwuhcW2t8dR4tzI2YIiFl2tvTPJYN6YNtWvB4ndoXdBgDY6ernK-wbHhT2fB43lvLF6sXec0dGB3oQ7X6KICG8zNcY7Q1_xpOXtJ3j6eX2fTtwS4El1ioEgnhS4In7AKmFaclkXFjZaEFQpKmTLCOQciMy24FLSaZFKCEIyWSinBR-j-kLv17qc3ocubOmhjIxzj-pDTjFHKRfw5StODVHsXgjdVvvV1A36XU5LvqeaRan6imh-pRtvd8UJfNKb8M50wRgE5CPb2jet95BX-z_wFa3aHIg</recordid><startdate>20170919</startdate><enddate>20170919</enddate><creator>DeSario, Paul A</creator><creator>Pietron, Jeremy J</creator><creator>Dunkelberger, Adam</creator><creator>Brintlinger, Todd H</creator><creator>Baturina, Olga</creator><creator>Stroud, Rhonda M</creator><creator>Owrutsky, Jeffrey C</creator><creator>Rolison, Debra R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0493-9931</orcidid><orcidid>https://orcid.org/0000-0001-7761-2812</orcidid><orcidid>https://orcid.org/0000-0003-2964-4849</orcidid></search><sort><creationdate>20170919</creationdate><title>Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis</title><author>DeSario, Paul A ; Pietron, Jeremy J ; Dunkelberger, Adam ; Brintlinger, Todd H ; Baturina, Olga ; Stroud, Rhonda M ; Owrutsky, Jeffrey C ; Rolison, Debra R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-eab46bcb0362fa2c831dbf3ec702b8ad7420333a079c53751f6977a5521d88853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeSario, Paul A</creatorcontrib><creatorcontrib>Pietron, Jeremy J</creatorcontrib><creatorcontrib>Dunkelberger, Adam</creatorcontrib><creatorcontrib>Brintlinger, Todd H</creatorcontrib><creatorcontrib>Baturina, Olga</creatorcontrib><creatorcontrib>Stroud, Rhonda M</creatorcontrib><creatorcontrib>Owrutsky, Jeffrey C</creatorcontrib><creatorcontrib>Rolison, Debra R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeSario, Paul A</au><au>Pietron, Jeremy J</au><au>Dunkelberger, Adam</au><au>Brintlinger, Todd H</au><au>Baturina, Olga</au><au>Stroud, Rhonda M</au><au>Owrutsky, Jeffrey C</au><au>Rolison, Debra R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-09-19</date><risdate>2017</risdate><volume>33</volume><issue>37</issue><spage>9444</spage><epage>9454</epage><pages>9444-9454</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We use plasmonic Au–TiO2 aerogels as a platform in which to marry synthetically thickened particle–particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au–TiO2/Pt arrangement in three dimensions effectively utilizes conduction−band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H2 generation with and without Pt cocatalysts added to Au–TiO2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light–stimulated generation of conduction band electrons in Au–TiO2 and TiO2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au–TiO2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28723093</pmid><doi>10.1021/acs.langmuir.7b01117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0493-9931</orcidid><orcidid>https://orcid.org/0000-0001-7761-2812</orcidid><orcidid>https://orcid.org/0000-0003-2964-4849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-09, Vol.33 (37), p.9444-9454
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1921135287
source ACS Publications
title Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Aerogels%20as%20a%20Three-Dimensional%20Nanoscale%20Platform%20for%20Solar%20Fuel%20Photocatalysis&rft.jtitle=Langmuir&rft.au=DeSario,%20Paul%20A&rft.date=2017-09-19&rft.volume=33&rft.issue=37&rft.spage=9444&rft.epage=9454&rft.pages=9444-9454&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.7b01117&rft_dat=%3Cproquest_cross%3E1921135287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1921135287&rft_id=info:pmid/28723093&rfr_iscdi=true