Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space

Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-09, Vol.158, p.441-454
Hauptverfasser: Cichy, Radoslaw Martin, Pantazis, Dimitrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue
container_start_page 441
container_title NeuroImage (Orlando, Fla.)
container_volume 158
creator Cichy, Radoslaw Martin
Pantazis, Dimitrios
description Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.
doi_str_mv 10.1016/j.neuroimage.2017.07.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1921133042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917305918</els_id><sourcerecordid>1921133042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</originalsourceid><addsrcrecordid>eNqFkUGL1TAQx4Mo7rr6FSTgxUufM0n62nhbl-dT2MWLnkNeOpWUtqlJurDf3tS3KngRBmbC_P4zZP6McYQdAu7fDbuZ1hj8ZL_TTgA2Oygh5BN2iaDrSteNeLrVtaxaRH3BXqQ0AIBG1T5nF6JtcN9ge8mGu3XM_t5GbzPxxeZMceZ2tuND8omHnt8djuXd8cPh-J5fcxempdApzFsz0hIp0Zxt9qGIeMpxdXmNxP3Ms5_olzYt1tFL9qy3Y6JXj_mKfft4-Hrzqbr9cvx8c31bOVWLXKESJ9UiNVqJpkNS1Alxgh4aiU7rxim9BwW6E70mpx3VCmqrSrutiUDLK_b2PHeJ4cdKKZvJJ0fjaGcKazKoBaKUoERB3_yDDmGN5R8bpSS0QiooVHumXAwpRerNEsvp44NBMJsfZjB__TCbHwZKCFmkrx8XrKeJuj_C3wYU4MMZoHKRe0_RJOdpdtT5SC6bLvj_b_kJtiigHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943082340</pqid></control><display><type>article</type><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</creator><creatorcontrib>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</creatorcontrib><description>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.07.023</identifier><identifier>PMID: 28716718</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain Mapping - methods ; Brain research ; Classification ; Cognition ; EEG ; Electroencephalography ; Electroencephalography - methods ; Female ; Functional magnetic resonance imaging ; Humans ; Information processing ; Localization ; Magnetic Resonance Imaging ; Magnetoencephalography ; Magnetoencephalography - methods ; Male ; MEG ; Methods ; Multivariate Analysis ; Object recognition ; Pattern classification ; Pattern Recognition, Automated - methods ; Photic Stimulation ; Representational similarity analysis ; Sensors ; Temporal lobe ; Time Factors ; Visual aspects ; Visual cortex ; Visual Cortex - physiology ; Visual perception ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-09, Vol.158, p.441-454</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</citedby><cites>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1943082340?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28716718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cichy, Radoslaw Martin</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</description><subject>Adult</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Classification</subject><subject>Cognition</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Information processing</subject><subject>Localization</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>MEG</subject><subject>Methods</subject><subject>Multivariate Analysis</subject><subject>Object recognition</subject><subject>Pattern classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photic Stimulation</subject><subject>Representational similarity analysis</subject><subject>Sensors</subject><subject>Temporal lobe</subject><subject>Time Factors</subject><subject>Visual aspects</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual perception</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUGL1TAQx4Mo7rr6FSTgxUufM0n62nhbl-dT2MWLnkNeOpWUtqlJurDf3tS3KngRBmbC_P4zZP6McYQdAu7fDbuZ1hj8ZL_TTgA2Oygh5BN2iaDrSteNeLrVtaxaRH3BXqQ0AIBG1T5nF6JtcN9ge8mGu3XM_t5GbzPxxeZMceZ2tuND8omHnt8djuXd8cPh-J5fcxempdApzFsz0hIp0Zxt9qGIeMpxdXmNxP3Ms5_olzYt1tFL9qy3Y6JXj_mKfft4-Hrzqbr9cvx8c31bOVWLXKESJ9UiNVqJpkNS1Alxgh4aiU7rxim9BwW6E70mpx3VCmqrSrutiUDLK_b2PHeJ4cdKKZvJJ0fjaGcKazKoBaKUoERB3_yDDmGN5R8bpSS0QiooVHumXAwpRerNEsvp44NBMJsfZjB__TCbHwZKCFmkrx8XrKeJuj_C3wYU4MMZoHKRe0_RJOdpdtT5SC6bLvj_b_kJtiigHg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Cichy, Radoslaw Martin</creator><creator>Pantazis, Dimitrios</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><author>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Classification</topic><topic>Cognition</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Information processing</topic><topic>Localization</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>MEG</topic><topic>Methods</topic><topic>Multivariate Analysis</topic><topic>Object recognition</topic><topic>Pattern classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photic Stimulation</topic><topic>Representational similarity analysis</topic><topic>Sensors</topic><topic>Temporal lobe</topic><topic>Time Factors</topic><topic>Visual aspects</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cichy, Radoslaw Martin</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cichy, Radoslaw Martin</au><au>Pantazis, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-09</date><risdate>2017</risdate><volume>158</volume><spage>441</spage><epage>454</epage><pages>441-454</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28716718</pmid><doi>10.1016/j.neuroimage.2017.07.023</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-09, Vol.158, p.441-454
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1921133042
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Adult
Brain Mapping - methods
Brain research
Classification
Cognition
EEG
Electroencephalography
Electroencephalography - methods
Female
Functional magnetic resonance imaging
Humans
Information processing
Localization
Magnetic Resonance Imaging
Magnetoencephalography
Magnetoencephalography - methods
Male
MEG
Methods
Multivariate Analysis
Object recognition
Pattern classification
Pattern Recognition, Automated - methods
Photic Stimulation
Representational similarity analysis
Sensors
Temporal lobe
Time Factors
Visual aspects
Visual cortex
Visual Cortex - physiology
Visual perception
Young Adult
title Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20pattern%20analysis%20of%20MEG%20and%20EEG:%20A%20comparison%20of%20representational%20structure%20in%20time%20and%20space&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Cichy,%20Radoslaw%20Martin&rft.date=2017-09&rft.volume=158&rft.spage=441&rft.epage=454&rft.pages=441-454&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.07.023&rft_dat=%3Cproquest_cross%3E1921133042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943082340&rft_id=info:pmid/28716718&rft_els_id=S1053811917305918&rfr_iscdi=true