Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differ...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2017-09, Vol.158, p.441-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | |
container_start_page | 441 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 158 |
creator | Cichy, Radoslaw Martin Pantazis, Dimitrios |
description | Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. |
doi_str_mv | 10.1016/j.neuroimage.2017.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1921133042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917305918</els_id><sourcerecordid>1921133042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</originalsourceid><addsrcrecordid>eNqFkUGL1TAQx4Mo7rr6FSTgxUufM0n62nhbl-dT2MWLnkNeOpWUtqlJurDf3tS3KngRBmbC_P4zZP6McYQdAu7fDbuZ1hj8ZL_TTgA2Oygh5BN2iaDrSteNeLrVtaxaRH3BXqQ0AIBG1T5nF6JtcN9ge8mGu3XM_t5GbzPxxeZMceZ2tuND8omHnt8djuXd8cPh-J5fcxempdApzFsz0hIp0Zxt9qGIeMpxdXmNxP3Ms5_olzYt1tFL9qy3Y6JXj_mKfft4-Hrzqbr9cvx8c31bOVWLXKESJ9UiNVqJpkNS1Alxgh4aiU7rxim9BwW6E70mpx3VCmqrSrutiUDLK_b2PHeJ4cdKKZvJJ0fjaGcKazKoBaKUoERB3_yDDmGN5R8bpSS0QiooVHumXAwpRerNEsvp44NBMJsfZjB__TCbHwZKCFmkrx8XrKeJuj_C3wYU4MMZoHKRe0_RJOdpdtT5SC6bLvj_b_kJtiigHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943082340</pqid></control><display><type>article</type><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</creator><creatorcontrib>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</creatorcontrib><description>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.07.023</identifier><identifier>PMID: 28716718</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain Mapping - methods ; Brain research ; Classification ; Cognition ; EEG ; Electroencephalography ; Electroencephalography - methods ; Female ; Functional magnetic resonance imaging ; Humans ; Information processing ; Localization ; Magnetic Resonance Imaging ; Magnetoencephalography ; Magnetoencephalography - methods ; Male ; MEG ; Methods ; Multivariate Analysis ; Object recognition ; Pattern classification ; Pattern Recognition, Automated - methods ; Photic Stimulation ; Representational similarity analysis ; Sensors ; Temporal lobe ; Time Factors ; Visual aspects ; Visual cortex ; Visual Cortex - physiology ; Visual perception ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-09, Vol.158, p.441-454</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</citedby><cites>FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1943082340?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28716718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cichy, Radoslaw Martin</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</description><subject>Adult</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Classification</subject><subject>Cognition</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Information processing</subject><subject>Localization</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>MEG</subject><subject>Methods</subject><subject>Multivariate Analysis</subject><subject>Object recognition</subject><subject>Pattern classification</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photic Stimulation</subject><subject>Representational similarity analysis</subject><subject>Sensors</subject><subject>Temporal lobe</subject><subject>Time Factors</subject><subject>Visual aspects</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual perception</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUGL1TAQx4Mo7rr6FSTgxUufM0n62nhbl-dT2MWLnkNeOpWUtqlJurDf3tS3KngRBmbC_P4zZP6McYQdAu7fDbuZ1hj8ZL_TTgA2Oygh5BN2iaDrSteNeLrVtaxaRH3BXqQ0AIBG1T5nF6JtcN9ge8mGu3XM_t5GbzPxxeZMceZ2tuND8omHnt8djuXd8cPh-J5fcxempdApzFsz0hIp0Zxt9qGIeMpxdXmNxP3Ms5_olzYt1tFL9qy3Y6JXj_mKfft4-Hrzqbr9cvx8c31bOVWLXKESJ9UiNVqJpkNS1Alxgh4aiU7rxim9BwW6E70mpx3VCmqrSrutiUDLK_b2PHeJ4cdKKZvJJ0fjaGcKazKoBaKUoERB3_yDDmGN5R8bpSS0QiooVHumXAwpRerNEsvp44NBMJsfZjB__TCbHwZKCFmkrx8XrKeJuj_C3wYU4MMZoHKRe0_RJOdpdtT5SC6bLvj_b_kJtiigHg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Cichy, Radoslaw Martin</creator><creator>Pantazis, Dimitrios</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201709</creationdate><title>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</title><author>Cichy, Radoslaw Martin ; Pantazis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-142b481e79427d1e4ed22b0f0731c997c4960409d2f9ec9ce5405a407385ee093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Classification</topic><topic>Cognition</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Information processing</topic><topic>Localization</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>MEG</topic><topic>Methods</topic><topic>Multivariate Analysis</topic><topic>Object recognition</topic><topic>Pattern classification</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photic Stimulation</topic><topic>Representational similarity analysis</topic><topic>Sensors</topic><topic>Temporal lobe</topic><topic>Time Factors</topic><topic>Visual aspects</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual perception</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cichy, Radoslaw Martin</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cichy, Radoslaw Martin</au><au>Pantazis, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-09</date><risdate>2017</risdate><volume>158</volume><spage>441</spage><epage>454</epage><pages>441-454</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28716718</pmid><doi>10.1016/j.neuroimage.2017.07.023</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-09, Vol.158, p.441-454 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1921133042 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adult Brain Mapping - methods Brain research Classification Cognition EEG Electroencephalography Electroencephalography - methods Female Functional magnetic resonance imaging Humans Information processing Localization Magnetic Resonance Imaging Magnetoencephalography Magnetoencephalography - methods Male MEG Methods Multivariate Analysis Object recognition Pattern classification Pattern Recognition, Automated - methods Photic Stimulation Representational similarity analysis Sensors Temporal lobe Time Factors Visual aspects Visual cortex Visual Cortex - physiology Visual perception Young Adult |
title | Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20pattern%20analysis%20of%20MEG%20and%20EEG:%20A%20comparison%20of%20representational%20structure%20in%20time%20and%20space&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Cichy,%20Radoslaw%20Martin&rft.date=2017-09&rft.volume=158&rft.spage=441&rft.epage=454&rft.pages=441-454&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.07.023&rft_dat=%3Cproquest_cross%3E1921133042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943082340&rft_id=info:pmid/28716718&rft_els_id=S1053811917305918&rfr_iscdi=true |