Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells

A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-08, Vol.89 (16), p.8377-8383
Hauptverfasser: Wu, Yanan, Huang, Jin, Yang, Xiaohai, Yang, Yanjing, Quan, Ke, Xie, Nuli, Li, Jing, Ma, Changbei, Wang, Kemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8383
container_issue 16
container_start_page 8377
container_title Analytical chemistry (Washington)
container_volume 89
creator Wu, Yanan
Huang, Jin
Yang, Xiaohai
Yang, Yanjing
Quan, Ke
Xie, Nuli
Li, Jing
Ma, Changbei
Wang, Kemin
description A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif with their substrate through partial paring at the end of each strand, and the fluorescence is quenched. Inside the cells, the target miRNA binds with both of the two half of split DNAzymes, forming the active secondary structure in the catalytic cores, which can cleave the substrates, resulting in the rupture of the substrate and recovery of the fluorescence. Meanwhile, the target is released and binds to another inactive DNAzyme motif to drive another cycle of activation. During the cyclic process, a very small number of target miRNAs can initiate the cleavage of many fluorophore-labeled substrate strands from AuNP surface, providing an amplified fluorescent signal of the target miRNA and, thus, offering high detection sensitivity.
doi_str_mv 10.1021/acs.analchem.7b01632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1921127716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941712648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-98ed183cd0dd2a7bf4bb0c487459b4b6fb2d5546fe18ad5a51259aa0f0d7fd403</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpaBy3_yAUQS-5rDuj1a7ko3E-wTghbS-9LNJKShV2V660DiS_PjJ2WuihpznM874zPIScIswQGH5VbZqpQXXtL9vPhAasS_aOTLBiUNRSsvdkAgBlwQTAMTlJ6REAMWMfyDGTAmXN6gn5eRU6Q9dqCBsVR992lq6CMtbQb5vOj8X5evHy3Ft6F4O21IVIF31eOJ-J3t-vF_TcjrYdfRioH-jKP_nhgS5t16WP5MipLtlPhzklPy4vvi-vi9Xt1c1ysSpUKeqxmEtrUJatAWOYEtpxraHlUvBqrrmunWamqnjtLEplKlUhq-ZKgQMjnOFQTsnZvncTw--tTWPT-9TmD9RgwzY1OGeITIgsaEq-_IM-hm3MEncUR4Gs5jJTfE-1MaQUrWs20fcqPjcIzc59k903b-6bg_sc-3wo3-remj-hN9kZgD2wi_89_L_OVwjokjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941712648</pqid></control><display><type>article</type><title>Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells</title><source>ACS Publications</source><creator>Wu, Yanan ; Huang, Jin ; Yang, Xiaohai ; Yang, Yanjing ; Quan, Ke ; Xie, Nuli ; Li, Jing ; Ma, Changbei ; Wang, Kemin</creator><creatorcontrib>Wu, Yanan ; Huang, Jin ; Yang, Xiaohai ; Yang, Yanjing ; Quan, Ke ; Xie, Nuli ; Li, Jing ; Ma, Changbei ; Wang, Kemin</creatorcontrib><description>A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif with their substrate through partial paring at the end of each strand, and the fluorescence is quenched. Inside the cells, the target miRNA binds with both of the two half of split DNAzymes, forming the active secondary structure in the catalytic cores, which can cleave the substrates, resulting in the rupture of the substrate and recovery of the fluorescence. Meanwhile, the target is released and binds to another inactive DNAzyme motif to drive another cycle of activation. During the cyclic process, a very small number of target miRNAs can initiate the cleavage of many fluorophore-labeled substrate strands from AuNP surface, providing an amplified fluorescent signal of the target miRNA and, thus, offering high detection sensitivity.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b01632</identifier><identifier>PMID: 28718626</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Cells ; Cells (biology) ; Chemistry ; Cores ; Deoxyribonucleic acid ; DNA ; Enzymes ; Fluorescence ; Gold ; Hybridization ; miRNA ; Nanoparticles ; Protein structure ; Quenching ; Ribonucleic acid ; RNA ; Secondary structure ; Substrates</subject><ispartof>Analytical chemistry (Washington), 2017-08, Vol.89 (16), p.8377-8383</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-98ed183cd0dd2a7bf4bb0c487459b4b6fb2d5546fe18ad5a51259aa0f0d7fd403</citedby><cites>FETCH-LOGICAL-a376t-98ed183cd0dd2a7bf4bb0c487459b4b6fb2d5546fe18ad5a51259aa0f0d7fd403</cites><orcidid>0000-0001-8122-7140 ; 0000-0001-9390-4938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b01632$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b01632$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28718626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yanan</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Yang, Xiaohai</creatorcontrib><creatorcontrib>Yang, Yanjing</creatorcontrib><creatorcontrib>Quan, Ke</creatorcontrib><creatorcontrib>Xie, Nuli</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ma, Changbei</creatorcontrib><creatorcontrib>Wang, Kemin</creatorcontrib><title>Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif with their substrate through partial paring at the end of each strand, and the fluorescence is quenched. Inside the cells, the target miRNA binds with both of the two half of split DNAzymes, forming the active secondary structure in the catalytic cores, which can cleave the substrates, resulting in the rupture of the substrate and recovery of the fluorescence. Meanwhile, the target is released and binds to another inactive DNAzyme motif to drive another cycle of activation. During the cyclic process, a very small number of target miRNAs can initiate the cleavage of many fluorophore-labeled substrate strands from AuNP surface, providing an amplified fluorescent signal of the target miRNA and, thus, offering high detection sensitivity.</description><subject>Catalysis</subject><subject>Cells</subject><subject>Cells (biology)</subject><subject>Chemistry</subject><subject>Cores</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Gold</subject><subject>Hybridization</subject><subject>miRNA</subject><subject>Nanoparticles</subject><subject>Protein structure</subject><subject>Quenching</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Secondary structure</subject><subject>Substrates</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpaBy3_yAUQS-5rDuj1a7ko3E-wTghbS-9LNJKShV2V660DiS_PjJ2WuihpznM874zPIScIswQGH5VbZqpQXXtL9vPhAasS_aOTLBiUNRSsvdkAgBlwQTAMTlJ6REAMWMfyDGTAmXN6gn5eRU6Q9dqCBsVR992lq6CMtbQb5vOj8X5evHy3Ft6F4O21IVIF31eOJ-J3t-vF_TcjrYdfRioH-jKP_nhgS5t16WP5MipLtlPhzklPy4vvi-vi9Xt1c1ysSpUKeqxmEtrUJatAWOYEtpxraHlUvBqrrmunWamqnjtLEplKlUhq-ZKgQMjnOFQTsnZvncTw--tTWPT-9TmD9RgwzY1OGeITIgsaEq-_IM-hm3MEncUR4Gs5jJTfE-1MaQUrWs20fcqPjcIzc59k903b-6bg_sc-3wo3-remj-hN9kZgD2wi_89_L_OVwjokjk</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Wu, Yanan</creator><creator>Huang, Jin</creator><creator>Yang, Xiaohai</creator><creator>Yang, Yanjing</creator><creator>Quan, Ke</creator><creator>Xie, Nuli</creator><creator>Li, Jing</creator><creator>Ma, Changbei</creator><creator>Wang, Kemin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8122-7140</orcidid><orcidid>https://orcid.org/0000-0001-9390-4938</orcidid></search><sort><creationdate>20170815</creationdate><title>Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells</title><author>Wu, Yanan ; Huang, Jin ; Yang, Xiaohai ; Yang, Yanjing ; Quan, Ke ; Xie, Nuli ; Li, Jing ; Ma, Changbei ; Wang, Kemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-98ed183cd0dd2a7bf4bb0c487459b4b6fb2d5546fe18ad5a51259aa0f0d7fd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Cells</topic><topic>Cells (biology)</topic><topic>Chemistry</topic><topic>Cores</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Gold</topic><topic>Hybridization</topic><topic>miRNA</topic><topic>Nanoparticles</topic><topic>Protein structure</topic><topic>Quenching</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Secondary structure</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yanan</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><creatorcontrib>Yang, Xiaohai</creatorcontrib><creatorcontrib>Yang, Yanjing</creatorcontrib><creatorcontrib>Quan, Ke</creatorcontrib><creatorcontrib>Xie, Nuli</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ma, Changbei</creatorcontrib><creatorcontrib>Wang, Kemin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yanan</au><au>Huang, Jin</au><au>Yang, Xiaohai</au><au>Yang, Yanjing</au><au>Quan, Ke</au><au>Xie, Nuli</au><au>Li, Jing</au><au>Ma, Changbei</au><au>Wang, Kemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-08-15</date><risdate>2017</risdate><volume>89</volume><issue>16</issue><spage>8377</spage><epage>8383</epage><pages>8377-8383</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A new class of intracellular nanoprobe, termed AuNP loaded split-DNAzyme probe, was developed to sense miRNA in living cells. Briefly, it consists of an AuNP and substrates hybridized with two half of split DNAzymes. In the absence of target miRNA, the split DNAzymes form an inactive DNAzyme motif with their substrate through partial paring at the end of each strand, and the fluorescence is quenched. Inside the cells, the target miRNA binds with both of the two half of split DNAzymes, forming the active secondary structure in the catalytic cores, which can cleave the substrates, resulting in the rupture of the substrate and recovery of the fluorescence. Meanwhile, the target is released and binds to another inactive DNAzyme motif to drive another cycle of activation. During the cyclic process, a very small number of target miRNAs can initiate the cleavage of many fluorophore-labeled substrate strands from AuNP surface, providing an amplified fluorescent signal of the target miRNA and, thus, offering high detection sensitivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28718626</pmid><doi>10.1021/acs.analchem.7b01632</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8122-7140</orcidid><orcidid>https://orcid.org/0000-0001-9390-4938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-08, Vol.89 (16), p.8377-8383
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1921127716
source ACS Publications
subjects Catalysis
Cells
Cells (biology)
Chemistry
Cores
Deoxyribonucleic acid
DNA
Enzymes
Fluorescence
Gold
Hybridization
miRNA
Nanoparticles
Protein structure
Quenching
Ribonucleic acid
RNA
Secondary structure
Substrates
title Gold Nanoparticle Loaded Split-DNAzyme Probe for Amplified miRNA Detection in Living Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanoparticle%20Loaded%20Split-DNAzyme%20Probe%20for%20Amplified%20miRNA%20Detection%20in%20Living%20Cells&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wu,%20Yanan&rft.date=2017-08-15&rft.volume=89&rft.issue=16&rft.spage=8377&rft.epage=8383&rft.pages=8377-8383&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b01632&rft_dat=%3Cproquest_cross%3E1941712648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941712648&rft_id=info:pmid/28718626&rfr_iscdi=true