Fractal mobile/immobile solute transport

A fractal mobile/immobile model for solute transport assumes power law waiting times in the immobile zone, leading to a fractional time derivative in the model equations. The equations are equivalent to previous models of mobile/immobile transport with power law memory functions and are the limiting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2003-10, Vol.39 (10), p.n/a
Hauptverfasser: Schumer, Rina, Benson, David A., Meerschaert, Mark M., Baeumer, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Water resources research
container_volume 39
creator Schumer, Rina
Benson, David A.
Meerschaert, Mark M.
Baeumer, Boris
description A fractal mobile/immobile model for solute transport assumes power law waiting times in the immobile zone, leading to a fractional time derivative in the model equations. The equations are equivalent to previous models of mobile/immobile transport with power law memory functions and are the limiting equations that govern continuous time random walks with heavy tailed random waiting times. The solution is gained by performing an integral transform on the solution of any boundary value problem for transport in the absence of an immobile phase. In this regard, the output from a multidimensional numerical model can be transformed to include the effect of a fractal immobile phase. The solutions capture the anomalous behavior of tracer plumes in heterogeneous aquifers, including power law breakthrough curves at late time, and power law decline in the measured mobile mass. The MADE site mobile tritium mass decline is consistent with a fractional time derivative of order γ = 0.33, while Haggerty et al.'s [2002] stream tracer test is well modeled by a fractional time derivative of order γ = 0.3.
doi_str_mv 10.1029/2003WR002141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19204761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19204761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5153-39f031c1abfe42ae8a23c50e2692db128ed55ac17a65837a60598f9404bcfdf03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv_oCexIOxM_uRzR6l2CpWxaL2uGy2G4gmTdxNqf33rkTEk5eZgXmegXkJOUW4RKBqTAHYcgFAkeMeGaDiPJFKsn0yAOAsQabkITkK4Q0AuUjlgJxPvbGdqUZ1k5eVG5d1P4xCU206N-q8WYe28d0xOShMFdzJTx-Sl-n18-QmmT_ObidX88QIFCxhqgCGFk1eOE6NywxlVoCjqaKrHGnmVkIYi9KkImOxglBZoTjw3Bar6A7JWX-39c3HxoVO12WwrqrM2jWboFFR4DLFCF70oPVNCN4VuvVlbfxOI-jvOPTfOCJOe3wbv9v9y-rlYrJQqWRRSnqpDJ37_JWMf9dxLYVePsx0djd_Yuxe6Ff2BeKybvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19204761</pqid></control><display><type>article</type><title>Fractal mobile/immobile solute transport</title><source>Wiley Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Schumer, Rina ; Benson, David A. ; Meerschaert, Mark M. ; Baeumer, Boris</creator><creatorcontrib>Schumer, Rina ; Benson, David A. ; Meerschaert, Mark M. ; Baeumer, Boris</creatorcontrib><description>A fractal mobile/immobile model for solute transport assumes power law waiting times in the immobile zone, leading to a fractional time derivative in the model equations. The equations are equivalent to previous models of mobile/immobile transport with power law memory functions and are the limiting equations that govern continuous time random walks with heavy tailed random waiting times. The solution is gained by performing an integral transform on the solution of any boundary value problem for transport in the absence of an immobile phase. In this regard, the output from a multidimensional numerical model can be transformed to include the effect of a fractal immobile phase. The solutions capture the anomalous behavior of tracer plumes in heterogeneous aquifers, including power law breakthrough curves at late time, and power law decline in the measured mobile mass. The MADE site mobile tritium mass decline is consistent with a fractional time derivative of order γ = 0.33, while Haggerty et al.'s [2002] stream tracer test is well modeled by a fractional time derivative of order γ = 0.3.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2003WR002141</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>CTRW ; fractal ; fractional derivative ; immobile phase</subject><ispartof>Water resources research, 2003-10, Vol.39 (10), p.n/a</ispartof><rights>Copyright 2003 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5153-39f031c1abfe42ae8a23c50e2692db128ed55ac17a65837a60598f9404bcfdf03</citedby><cites>FETCH-LOGICAL-a5153-39f031c1abfe42ae8a23c50e2692db128ed55ac17a65837a60598f9404bcfdf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003WR002141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003WR002141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Schumer, Rina</creatorcontrib><creatorcontrib>Benson, David A.</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Baeumer, Boris</creatorcontrib><title>Fractal mobile/immobile solute transport</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A fractal mobile/immobile model for solute transport assumes power law waiting times in the immobile zone, leading to a fractional time derivative in the model equations. The equations are equivalent to previous models of mobile/immobile transport with power law memory functions and are the limiting equations that govern continuous time random walks with heavy tailed random waiting times. The solution is gained by performing an integral transform on the solution of any boundary value problem for transport in the absence of an immobile phase. In this regard, the output from a multidimensional numerical model can be transformed to include the effect of a fractal immobile phase. The solutions capture the anomalous behavior of tracer plumes in heterogeneous aquifers, including power law breakthrough curves at late time, and power law decline in the measured mobile mass. The MADE site mobile tritium mass decline is consistent with a fractional time derivative of order γ = 0.33, while Haggerty et al.'s [2002] stream tracer test is well modeled by a fractional time derivative of order γ = 0.3.</description><subject>CTRW</subject><subject>fractal</subject><subject>fractional derivative</subject><subject>immobile phase</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZv_oCexIOxM_uRzR6l2CpWxaL2uGy2G4gmTdxNqf33rkTEk5eZgXmegXkJOUW4RKBqTAHYcgFAkeMeGaDiPJFKsn0yAOAsQabkITkK4Q0AuUjlgJxPvbGdqUZ1k5eVG5d1P4xCU206N-q8WYe28d0xOShMFdzJTx-Sl-n18-QmmT_ObidX88QIFCxhqgCGFk1eOE6NywxlVoCjqaKrHGnmVkIYi9KkImOxglBZoTjw3Bar6A7JWX-39c3HxoVO12WwrqrM2jWboFFR4DLFCF70oPVNCN4VuvVlbfxOI-jvOPTfOCJOe3wbv9v9y-rlYrJQqWRRSnqpDJ37_JWMf9dxLYVePsx0djd_Yuxe6Ff2BeKybvc</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Schumer, Rina</creator><creator>Benson, David A.</creator><creator>Meerschaert, Mark M.</creator><creator>Baeumer, Boris</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200310</creationdate><title>Fractal mobile/immobile solute transport</title><author>Schumer, Rina ; Benson, David A. ; Meerschaert, Mark M. ; Baeumer, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5153-39f031c1abfe42ae8a23c50e2692db128ed55ac17a65837a60598f9404bcfdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>CTRW</topic><topic>fractal</topic><topic>fractional derivative</topic><topic>immobile phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumer, Rina</creatorcontrib><creatorcontrib>Benson, David A.</creatorcontrib><creatorcontrib>Meerschaert, Mark M.</creatorcontrib><creatorcontrib>Baeumer, Boris</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumer, Rina</au><au>Benson, David A.</au><au>Meerschaert, Mark M.</au><au>Baeumer, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal mobile/immobile solute transport</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2003-10</date><risdate>2003</risdate><volume>39</volume><issue>10</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A fractal mobile/immobile model for solute transport assumes power law waiting times in the immobile zone, leading to a fractional time derivative in the model equations. The equations are equivalent to previous models of mobile/immobile transport with power law memory functions and are the limiting equations that govern continuous time random walks with heavy tailed random waiting times. The solution is gained by performing an integral transform on the solution of any boundary value problem for transport in the absence of an immobile phase. In this regard, the output from a multidimensional numerical model can be transformed to include the effect of a fractal immobile phase. The solutions capture the anomalous behavior of tracer plumes in heterogeneous aquifers, including power law breakthrough curves at late time, and power law decline in the measured mobile mass. The MADE site mobile tritium mass decline is consistent with a fractional time derivative of order γ = 0.33, while Haggerty et al.'s [2002] stream tracer test is well modeled by a fractional time derivative of order γ = 0.3.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003WR002141</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2003-10, Vol.39 (10), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_19204761
source Wiley Journals; Free E-Journal (出版社公開部分のみ); Wiley-Blackwell AGU Digital Archive
subjects CTRW
fractal
fractional derivative
immobile phase
title Fractal mobile/immobile solute transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20mobile/immobile%20solute%20transport&rft.jtitle=Water%20resources%20research&rft.au=Schumer,%20Rina&rft.date=2003-10&rft.volume=39&rft.issue=10&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2003WR002141&rft_dat=%3Cproquest_cross%3E19204761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19204761&rft_id=info:pmid/&rfr_iscdi=true