Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics

Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2017-07, Vol.147 (2), p.024704-024704
Hauptverfasser: Agosta, Lorenzo, Brandt, Erik G., Lyubartsev, Alexander P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024704
container_issue 2
container_start_page 024704
container_title The Journal of chemical physics
container_volume 147
creator Agosta, Lorenzo
Brandt, Erik G.
Lyubartsev, Alexander P.
description Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as “hard” (irreversibly bound to the surface), “soft” (with reduced mobility but orientation freedom near the surface), or “bulk.” The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.
doi_str_mv 10.1063/1.4991381
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1920201647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920201647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ee80e2400be3b03493c6469e2db141f0e95d9dd1350fd028a71a6eda0cbf7a2e3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxU1pINukh3wDQS9tqdMZWStbx5D0HwRySXsVsjRqFGxrK1ks_vbxsksPPfQ0zPCbx5t5VXWFcI0gm894LZTCpsNX1QahU3UrFbyuNgAcayVBnldvcn4GAGy52FTDXfC-5BAnZibHEhk7H5qdmZ_2ZskserY3MyU2kUnMl2FY2NPi0jpz7DE8cJZL8sZSZj7FkZmehSmsGmyMA9kyrFtumcwYbL6szrwZMr091Yvq59cvj7ff6_uHbz9ub-5rK2Qz10QdEBcAPTU9NEI1VgqpiLseBXogtXXKOWy24B3wzrRoJDkDtvet4dRcVJ-OunlPu9LrXQqjSYuOJui78OtGx_Rb56JRbBVsV_z9Ed-l-KdQnvUYsqVhMBPFkjUqDhxQinZF3_2DPseSpvUYzREldF0n-Up9OFI2xZwT-b8OEPQhJo36FNPKfjx5tWE2h9__B34BqMiSfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116088862</pqid></control><display><type>article</type><title>Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>SWEPUB Freely available online</source><creator>Agosta, Lorenzo ; Brandt, Erik G. ; Lyubartsev, Alexander P.</creator><creatorcontrib>Agosta, Lorenzo ; Brandt, Erik G. ; Lyubartsev, Alexander P.</creatorcontrib><description>Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as “hard” (irreversibly bound to the surface), “soft” (with reduced mobility but orientation freedom near the surface), or “bulk.” The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4991381</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anatase ; Computer simulation ; fysikalisk kemi ; Graph theory ; Hydration ; Molecular dynamics ; Physical Chemistry ; Titanium dioxide ; Water splitting</subject><ispartof>The Journal of chemical physics, 2017-07, Vol.147 (2), p.024704-024704</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ee80e2400be3b03493c6469e2db141f0e95d9dd1350fd028a71a6eda0cbf7a2e3</citedby><cites>FETCH-LOGICAL-c463t-ee80e2400be3b03493c6469e2db141f0e95d9dd1350fd028a71a6eda0cbf7a2e3</cites><orcidid>0000-0002-9390-5719 ; 0000-0002-5496-4695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4991381$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-145905$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Agosta, Lorenzo</creatorcontrib><creatorcontrib>Brandt, Erik G.</creatorcontrib><creatorcontrib>Lyubartsev, Alexander P.</creatorcontrib><title>Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics</title><title>The Journal of chemical physics</title><description>Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as “hard” (irreversibly bound to the surface), “soft” (with reduced mobility but orientation freedom near the surface), or “bulk.” The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.</description><subject>Anatase</subject><subject>Computer simulation</subject><subject>fysikalisk kemi</subject><subject>Graph theory</subject><subject>Hydration</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kU9r3DAQxU1pINukh3wDQS9tqdMZWStbx5D0HwRySXsVsjRqFGxrK1ks_vbxsksPPfQ0zPCbx5t5VXWFcI0gm894LZTCpsNX1QahU3UrFbyuNgAcayVBnldvcn4GAGy52FTDXfC-5BAnZibHEhk7H5qdmZ_2ZskserY3MyU2kUnMl2FY2NPi0jpz7DE8cJZL8sZSZj7FkZmehSmsGmyMA9kyrFtumcwYbL6szrwZMr091Yvq59cvj7ff6_uHbz9ub-5rK2Qz10QdEBcAPTU9NEI1VgqpiLseBXogtXXKOWy24B3wzrRoJDkDtvet4dRcVJ-OunlPu9LrXQqjSYuOJui78OtGx_Rb56JRbBVsV_z9Ed-l-KdQnvUYsqVhMBPFkjUqDhxQinZF3_2DPseSpvUYzREldF0n-Up9OFI2xZwT-b8OEPQhJo36FNPKfjx5tWE2h9__B34BqMiSfA</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Agosta, Lorenzo</creator><creator>Brandt, Erik G.</creator><creator>Lyubartsev, Alexander P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-9390-5719</orcidid><orcidid>https://orcid.org/0000-0002-5496-4695</orcidid></search><sort><creationdate>20170714</creationdate><title>Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics</title><author>Agosta, Lorenzo ; Brandt, Erik G. ; Lyubartsev, Alexander P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ee80e2400be3b03493c6469e2db141f0e95d9dd1350fd028a71a6eda0cbf7a2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Computer simulation</topic><topic>fysikalisk kemi</topic><topic>Graph theory</topic><topic>Hydration</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agosta, Lorenzo</creatorcontrib><creatorcontrib>Brandt, Erik G.</creatorcontrib><creatorcontrib>Lyubartsev, Alexander P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agosta, Lorenzo</au><au>Brandt, Erik G.</au><au>Lyubartsev, Alexander P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><date>2017-07-14</date><risdate>2017</risdate><volume>147</volume><issue>2</issue><spage>024704</spage><epage>024704</epage><pages>024704-024704</pages><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as “hard” (irreversibly bound to the surface), “soft” (with reduced mobility but orientation freedom near the surface), or “bulk.” The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4991381</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9390-5719</orcidid><orcidid>https://orcid.org/0000-0002-5496-4695</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2017-07, Vol.147 (2), p.024704-024704
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1920201647
source AIP Journals Complete; Alma/SFX Local Collection; SWEPUB Freely available online
subjects Anatase
Computer simulation
fysikalisk kemi
Graph theory
Hydration
Molecular dynamics
Physical Chemistry
Titanium dioxide
Water splitting
title Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20reaction%20pathways%20of%20water%20near%20fully%20hydrated%20TiO2%20surfaces%20from%20ab%20initio%20molecular%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Agosta,%20Lorenzo&rft.date=2017-07-14&rft.volume=147&rft.issue=2&rft.spage=024704&rft.epage=024704&rft.pages=024704-024704&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4991381&rft_dat=%3Cproquest_cross%3E1920201647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116088862&rft_id=info:pmid/&rfr_iscdi=true